
Language Support for
Refactorability Decay Prevention

Research Thesis

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Dov Fraivert

The Research Thesis Was Done Under

the Supervision of Prof. David H. Lorenz

in the Dept. of Mathematics and Computer Science

The Open University of Israel

Submitted to the Senate of the Open University of Israel
September 2023

Acknowledgements

I would like to express my sincere appreciation and gratitude to my thesis advisor,

Prof. David Lorenz, for the fruitful discussions and guidance throughout the process

of writing this thesis. His assistance, attention to detail, and great ideas enriched my

knowledge and made this thesis possible.

I would also like to thank Prof. Shachar Itzhaky for serving on my thesis defense

committee and for his helpful comments and suggestions.

ii

Abstract

Code smells are characteristics found in the code that indicate a violation

of design principles that negatively impact the quality of the code. Even a

code that is free of smells may be at high risk of forming them. In such cases,

developers can either perform preventive refactoring in order to reduce the risk

or leave the code as is and perform corrective refactoring as smells emerge.

Each of these approaches has its advantages and disadvantages. On the one

hand, developers usually avoid preventive refactoring during the development

phase. This is because, at that point in time, the need is uncertain, and

therefore the return on the investment is not guaranteed. On the other hand,

when code smells eventually form, other developers who are less acquainted

with the code, avoid the more complex corrective refactoring. As a result, a

refactoring opportunity is missed, and the quality and maintainability of the

code is compromised.

In this work, we treat refactoring not as a single atomic action, but rather as

a sequence of subactions. This allows us to divide the responsibility for these

subactions between the original developer of the code, who just prepares the

code for refactoring, and a subsequent developer, who may need to carry out

the actual refactoring action (when code smells form). To manage this division

of responsibility, we have designed and developed a set of annotations along

with an annotation processor that prevents software erosion from compromising

the ability to perform the refactoring action.

List of Publications

[1] D. Fraivert and D. H. Lorenz. 2022. Language Support for Refactorability Decay

Prevention. In Proceedings of the 21st ACM SIGPLAN International Conference

on Generative Programming: Concepts and Experiences (GPCE ’22), December 6–7,

2022, Auckland, New Zealand, 122-–134. ACM, New York, NY, USA.

https://doi.org/10.1145/3564719.3568688

[2] D. Fraivert and D. H. Lorenz. 2022. Explicit Code Reuse Recommendation.

In Companion Proceedings of the ACM SIGPLAN International Conference on

Systems, Programming, Languages, and Applications: Software for Humanity

(SPLASH ’22), December 5-11, 2022, Auckland, New Zealand, 9–10. ACM, New

York, NY, USA. https://doi.org/10.1145/3563768.3564118

v

https://doi.org/10.1145/3564719.3568688
https://doi.org/10.1145/3563768.3564118

Contents

List of Figures x

List of Listings xi

List of Tables xiii

List of Algorithms xiv

List of Definitions xvi

1 Introduction 1

1.1 When to Refactor? . 2

1.2 The Problem . 3

1.3 Our Approach . 4

1.3.1 Refactoring the Refactoring Action 4

1.3.2 Approach to Preventing Refactorability Decay 4

2 Background 7

2.1 Preventive Refactoring . 7

2.1.1 Advantages . 7

2.1.2 Disadvantages Due to Incompatibility 8

2.1.3 Disadvantages Due to Lack of Worthwhileness 9

2.2 Corrective Refactoring . 9

2.2.1 Advantages . 10

2.2.2 Disadvantages . 10

2.3 Tools that Help Perform Corrective Refactoring 10

2.3.1 Identifying Refactoring Opportunities 10

vi

2.3.1.1 Limitations: . 11

2.3.2 Documentation . 11

2.3.3 Tools Support for Refactoring . 11

2.4 Advantages of the Our Approach . 11

3 Problem 13

3.1 Refactorability Decay Due to Lack of Familiarity With the Code 13

3.2 Refactorability Decay Due to Code Erosion 19

3.3 The Consequence of Refactorability Decay 19

3.4 Could Language Support have Helped to Prevent Refactorability Decay? . 25

4 Approach 29

4.1 Extract Method . 29

4.1.1 Sequence of Steps . 29

4.1.2 Derivation of a Check-List of Refactorability Scents 34

4.2 Move Method . 35

4.2.1 Sequence of Steps . 35

4.2.2 Derivation of a Check-List of Refactorability Scents 37

4.3 Extract Method + Move Method . 38

5 Language Support 39

5.1 Properties of a Code Fragment . 39

5.2 New Annotations . 39

5.2.1 The @MovableMethod Annotation 40

5.2.2 The @ExtractableCode Annotation 40

5.2.3 The @MovableCode Annotation . 41

5.2.4 Configurable Annotations . 42

5.3 Implementation Notes . 42

6 Methodology 45

6.1 Movable Code . 45

6.2 Movable Method . 49

6.3 Annotation of Code that is Already Ready for Refraction 52

vii

6.4 Code that is Difficult to Refactor . 53

7 Evaluation 55

7.1 Simulating Developer δ1 . 55

Experiment: . 56

7.2 Simulating Developer δ3 . 57

Experiment: . 57

7.3 Results . 57

7.4 Threats to Validity . 59

8 Discussion 61

8.1 Another Possible Benefit of Using Annotations 61

8.2 Directions for Further Research . 63

8.2.1 Mapping the Entire Refactoring Catalog 63

8.2.2 Annotation for Self-contained Code that is Suitable for Reuse . . . 64

8.2.3 Possible Improvements to the Annotations Presented in Sect. 5.2 . . 64

8.2.4 Support for Refactorability Decay Prevention in Additional Languages 65

8.2.5 Semantic Changes in Reusable Code 65

9 Conclusion 67

A Developer Guide 69

A.1 Overview of the Class Structure . 69

A.1.1 The annotations Package . 69

A.1.2 The processors Package . 69

A.1.3 The engine Package . 73

A.1.4 The visitors Package . 74

A.2 Guidelines for Adding New Annotations and Tests 75

B User Guide 77

B.1 Adding the Corean Library to IntelliJ 77

B.2 Using Configurable Annotations . 78

B.3 Limitations . 79

viii

B.4 The ReusableCodeViewer Plugin . 80

B.4.1 Adding the ReusableCodeViewer Plugin to IntelliJ 80

B.4.2 Limitations . 80

C Supplemental Examples 81

D Evaluation Tasks 89

D.1 Examples of the Tasks . 89

D.2 Details of the Results . 95

ix

List of Figures

1.1 Example of the expected level of code familiarity and code erosion throughout

the life of the project. 2

1.2 Example of the expected amount of preventive and corrective refactoring

at three phases in the life of a project. 3

3.1 Attempt to perform EM via the refactoring menu. 20

8.1 The option Show Reusable Code added to Tools by the plugin 62

A.1 The class diagram of Corean . 70

x

Listings

3.1 The method openWindow » JabRefGUI . 14

3.2 The extracted method . 15

3.3 The corrections that allow to perform MM 17

3.4 A method with a useful code fragment . 18

3.5 The method BibtexCaseChanger » convertSpecialChar 20

3.6 The method FieldWriter » checkBraces 21

3.7 The method BibtexNameFormatter » formatName 22

3.8 The method BibtexNameFormatter » numberOfChars 23

3.9 The method BracesCorrector » apply . 23

3.10 The method RemoveBracesFormatter » hasNegativeBraceCount 24

3.11 List. 3.6 with the @ExtractableCode annotation added 25

3.12 Build output for List. 3.11 . 26

3.13 List. 3.11 after possible modifications by developer δ1 at time τ1 27

3.14 Error message after annotating List. 3.5 with @ExtractableCode 27

3.15 Error message after annotating List. 3.10 with @ExtractableCode 27

4.1 Before extraction . 31

4.2 After extraction . 31

4.3 Before extraction . 31

4.4 After extraction . 31

4.5 Before extraction . 32

4.6 After extraction . 32

4.7 Before extraction . 33

4.8 After extraction . 33

6.1 The useful code annotated with @MovableCode 47

6.2 Error message caused by @MovableCode annotation 47

xi

6.3 List. C.4 after changes by developer δ2 . 48

6.4 Error message caused by @MovableCode annotation 48

6.5 A useful private method . 50

6.6 Error message after annotating List. 6.5 with @MovableMethod 51

6.7 Error message caused by the changes made by developer δ2 51

6.8 List. 3.9 with the @MovableCode annotation added 52

6.9 List. 3.5 with the @ExtractableCode annotation added 53

B.1 The dependency of Corean library . 78

B.2 The refactorability_configuration.json configuration file 78

C.1 List. 3.1 after possible corrections of developer δ1 82

C.2 The result of the extraction with Eclipse 83

C.3 The result of the extraction with IntelliJ 83

C.4 List. 6.1 after the preparation step for EM and MM refactoring 84

C.5 List. 6.3 after possible modifications by developer δ2 that do not cause

refactorability decay . 85

C.6 List. 6.5 after the preparation step for MM refactoring 86

C.7 List. C.6 after the changes made by developer δ2 87

C.8 List. C.7 after possible modifications by developer δ2 that do not cause

refactorability decay . 88

D.1 Refactoring Task Ai (without annotations) 90

D.2 Refactoring Task A∗
i (with annotations) . 91

D.3 Refactoring Task Bi (without annotations) 92

D.4 Refactoring Task B∗
i (with annotations) 93

xii

List of Tables

4.1 Refactorability Scents of EM . 34

4.2 Refactorability Scents of MM . 37

D.1 Comparison of challenges . 94

xiii

xiv

List of Algorithms

1 Extract Method . 30

2 Move Method . 35

3 Pull Up Method . 63

xv

List of Definitions

4.1.1 Definition (EM-ready) . 34

4.1.2 Definition (preparatory stage for EM) . 34

4.2.1 Definition (MM-ready) . 37

4.2.2 Definition (preparatory stage for MM) . 37

xvi

Chapter 1

Introduction

Code refactoring [3, 4] is the process of applying a series of refactoring actions in

response to code smells. A refactoring action [5] is a small, behavior-preserving code

transformation, in which the structure of the code is changed without affecting its

observable behavior. A code smell [5] is an anti-pattern found in the code that indicates

a potential flaw which a refactoring action may correct.

One use of refactoring is as a preventive measure for making the code more robust

when it is still free of smells [6]. Another more common use of refactoring [4] is for

correcting code smells as they occur. We refer to the former use as preventive refactoring

and to the latter as corrective refactoring.

The difference between “preventive” and “corrective” refactoring is not only in the

time of initiation but also in the complexity and cost of achieving the same objective.

Preventive refactoring is typically carried out by the developer when the code is still fresh

and tidy. In contrast, corrective refactoring is typically done by some other developer who

might be less familiar with the code [7], after erosion already took place [8]. We refer to

the increasing complexity of code refactoring over time as refactorability decay (Fig. 1.1).

This begs the question: in the face of refactorability decay, which practice is more

cost-effective — multiple preventive refactorings up-front when the cost of applying the

refactoring is low but the return-on-investment is not guaranteed — or, fewer corrective

refactorings down-the-road when the need is certain but the cost of applying the

refactoring is higher?

1

TimeLow

High

Code Erosion

Code Familiarity

Figure 1.1: Example of the expected level of code familiarity and code erosion throughout the life of the
project.

1.1 When to Refactor?

Timing a refactoring action is not a simple matter [9]. For example, consider code written

by developer δ1 at time τ1 (Fig. 1.2). Then, at time τ2 the code is maintained by another

developer δ2 (or several developers). Finally, at time τ3 a third developer δ3 improves

or reuses the code. The three moments, τ1, τ2, and τ3 may be close together or may be

spread over an extended period of time. W.l.o.g., we can assume that at time τ1 the

code is free of smells (otherwise, developer δ1 would have eliminated them with corrective

refactoring).

Now, suppose that developer δ1 foresees already at time τ1 the likelihood for certain

code smells forming and even has a good grasp on what sort of restructuring might be

helpful in the long term. Still, there might be no urgency or resources to engage at

time τ1 in extensive preventive refactoring. There might also be concern that premature

refactoring at time τ1 can unnecessarily clutter the code, thus causing in the short term

deterioration rather than improvement of the software quality.

In these cases as well as others, developer δ1 would need to defer to developer δ3

the appropriate corrective refactoring action, to be done at time τ3 should code smells

actually form. Unfortunately, there is neither channel for communicating information

from developer δ1 to developer δ3 at time τ1 or at time τ3, nor language support for

reducing the risk of refactorability decay between time τ1 and time τ3.

2

time τ1 time τ2 time τ3

R
ef

ac
to

ri
ng

preventive corrective refactorability

Figure 1.2: Example of the expected amount of preventive and corrective refactoring at three phases in
the life of a project.

1.2 The Problem

As a result of the trade-offs that preventive and corrective refactoring present, in many

projects developer δ1 does not perform preventive refactoring at time τ1, and when, in the

future, code smells are formed, developer δ3, who is not well-acquainted with the code,

avoids performing complex corrective refactoring (e.g., because of the risk of introducing

bugs into the existing code [10]), and as a result, the quality and maintainability of the

code are compromised.

This problem is caused by all the required effort being concentrated in the same stage,

either time τ1 (for preventive refactoring) or time τ3 (for corrective refactoring). We are

looking for a new approach that will allow the effort to be distributed throughout the life

of the project, between time τ1, time τ2, and time τ3.

Our thesis is that if we identify the properties of the code that make corrective

refactoring complex to execute for developer δ3, who is not familiar with the code, then

we can develop a method by which:

• Developer δ1, instead of performing the full preventive refactoring, will only perform

“code refactoring preparation”, in which he will ensure that the code does not

contain problematic properties. This requires significantly less effort than full

preventive refactoring, so δ1 developers will be more willing to perform it.

• Developer δ3 will perform corrective refactoring on code that has passed the

“preparation stage” (and therefore does not have the properties that can make it

difficult to perform corrective refactoring). This refactoring will require significantly

3

less effort than corrective refactoring on regular code, so δ3 developers will be more

willing to perform the required refactoring.

1.3 Our Approach

In this work, we introduce a new approach to refactoring that strikes a balance between

preventive and corrective refactoring.

1.3.1 Refactoring the Refactoring Action

The dilemma is whether to refactor proactively at time τ1 or reactively at time τ3 is

based on a common but false perception that refactoring is an atomic action. However, a

refactoring action is anything but atomic. Even with IDE support, each action

encompasses a sequence of steps taken by the developer before and after accessing the

“one-click” refactoring action through the context menu.

In this work, we identify these steps and show that they can be partitioned into two

sets: σ-steps and µ-steps. A σ-step is structural in nature — it relies on the coding

style and other properties, requires a deep understanding of the code, and is subject to

refactorability decay. A µ-step is mechanical in nature — it does not require a deep

understanding of the code and is less sensitive to code erosion.

We derive a check-list of “refactorability scents” that developer δ1 should address at

time τ1, as preparation for the refactoring action. With this “preparatory step” and

assuming that code erosion does not admit these scents back into the code at time τ2, we

can expect that developer δ3 will be able to cope successfully with σ-steps at time τ3, just

as well as developer δ1 could have coped with them at time τ1. As for µ-steps, there is

not much difference between developer δ1 and developer δ3 in term of the proficiency and

effort required to complete them.

1.3.2 Approach to Preventing Refactorability Decay

If the refactoring action consists mainly of σ-steps, it is better that developer δ1 performs

the operation up-front. If the refactoring action consists mainly of µ-steps, it is best to

4

defer the refactoring to developer δ3.

In case the refactoring operation comprises multiple σ-steps and multiple µ-steps,

the responsibility can be shared. Developer δ1 can make necessary changes to the code

to eliminate refactorability scents, thus facilitating easy execution of σ-steps later on.

Developer δ1 can also annotate (annotations are presented in Chapter 5) code fragments

relevant to the action, allowing the compiler to flag refactorability scents that could

interfere with σ-steps. With these annotations in place, developer δ2 would receive at

time τ2 compilation error messages alerting against undesirable changes, thus protecting

these fragments of code against refactorability decay. Eventually, when developer δ3 needs

to perform the refactoring action, the lack of familiarity with the code should not play a

critical role in the safe and easy completion of the σ-steps.

To concretely illustrate our approach, we present such annotations for the Java

programming language. With these annotations, developer δ1 can annotate code

fragments. In turn, these annotations enable compile-time checks that help to reduce

and hopefully prevent refactorability decay.

5

6

Chapter 2

Background

This chapter describes the background of the types of refactoring, the advantages and

disadvantages of each type, and the tools that can help perform the refactoring.

2.1 Preventive Refactoring

There are good reasons for developer δ1 to perform preventive refactoring at time τ1. For

example:

• A useful code fragment was written as part of a method in some class, and not as a

separate method in an appropriate class. If in the future, this capability is needed

elsewhere in the project, there is a risk that code duplication will be created.

• A method that is responsible for several actions: there is a risk that in the future

this method will grow beyond the desired size.

• A private method that performs an operation unrelated to the role of the class:

there is a risk that, in the future, this will cause Feature Envy [11].

In these cases, the developer δ1 can perform preventive refactoring at time τ1, and thus

decrease the risk of the formation of code smells in the future.

2.1.1 Advantages

The refactoring will be done by the developer δ1 who knows the code well (compared to

developer δ3), so a smaller investment of time and effort will be required, and there is a

7

lower risk that errors will be generated due to the refactoring.

Another advantage of performing refactoring at time τ1 is that there is a risk that at

time τ2, software erosion will occur which will make it difficult to perform refactoring at

time τ3.

Concerning the three types of code smells that we mentioned at the beginning of the

section, performing preventive refactoring at time τ1 means ensuring Single Responsibility

[12] at the level of methods and classes, as well as ensuring low coupling and high cohesion

in developed classes. Such refactoring will produce code consisting of short methods

that perform defined operations, and small classes that perform a defined role, and that

are dependent mainly on their internal components. Alongside the advantages, such

development has its drawbacks, due to incompatibility and lack of worthwhileness.

2.1.2 Disadvantages Due to Incompatibility

In the following cases, developer δ1 can decide that it is less appropriate for refactoring

at time τ1:

• There are cases in which we prefer that the code remains within a single large

method, for example, in order to see the full picture and improve efficiency in the

future, so we would prefer not to perform Extract Method [13].

• Agile focuses on coding for current needs and does not encourage investment in

coding that may be used for future reuse. For example, in Extreme Programming,

we want to get the Simplest Design, and therefore we create a minimum number

of classes and methods, without strict adherence to Single Responsibility, and only

when in practice we want to reuse the existing code we do perform an appropriate

refactoring operation [14].

• Some developers prefer a development style of writing long methods that perform

several actions.

8

2.1.3 Disadvantages Due to Lack of Worthwhileness

Execution of Preventive refactoring whenever developer δ1 detects any violation of the

Single Responsibility principle requires a large investment at time τ1, which is not always

worthwhile to perform in that phase of initial development, since only a small part of the

developed code can actually be reused in the future, or code smells will be created in it,

which doesn’t justify a great investment in the initial development phase [10, 15].

Another disadvantage arises from the fact that in the initial phase of the project, not

all classes exist yet, so it can be difficult to find the most suitable class for some particular

code. At this initial stage, if the developer of a particular class needs code that performs

a certain action that is not related to the main role of the current class, sometimes it is

more correct and effective to leave the code in the current class for the time being, and

look for the most appropriate class for it only later in the project, when all the other

classes already exist.

2.2 Corrective Refactoring

There are good reasons for developer δ3 to perform corrective refactoring at time τ3.

Even if the code is written without code smells at time τ1, at time τ2 the code undergoes

changes and adjustments which can cause software erosion and formation of code smells

in the code. For example:

• Code duplication can be created.

• Additional code that performs another action can be added to code that performed

a particular action.

• A code segment can increasingly use other class elements.

• A method can grow beyond the desired size.

All of these problems must be addressed at time τ3 by developer δ3 who has detected the

existence of previously created code smells, or who himself wants to make a change in the

code that will cause code smells (e.g., inserting a fragment of code that already exists). In

9

this case, he must perform corrective refactoring appropriately and prevent the creation

of code smells.

2.2.1 Advantages

The main advantage is that the refactoring will be performed only in those cases where

the need is certain. For example, where in practice we want to reuse this code, or if other

code smells are formed.

Another advantage comes from the fact that usually, time τ3 is at a more advanced

stage in a project when there are already more classes, and therefore, it is easier to find

the class that best fits a particular code.

2.2.2 Disadvantages

The refactoring will be performed by developer δ3 that did not develop the original code

and does not necessarily know it thoroughly. Therefore, refactoring will require a greater

investment of time and effort, and there is a higher risk of errors.

Another disadvantage comes from the risk that maintenance changes made at time τ2

can generate dependence on, and a closer connection to, other code. This will make it

difficult to perform the desired refactoring operation.

2.3 Tools that Help Perform Corrective Refactoring

2.3.1 Identifying Refactoring Opportunities

JDeodorant [16, 17] is a plugin for Eclipse that automatically identifies places in the

code where two types of Extract Method can be performed: (i) a complete computation

of a given variable; (ii) determining the state of a given object. This plugin also identifies

methods for which Move Method to a particular target class will reduce coupling and

improve cohesion. The algorithm screens the possible suggestions, and leaves only those

in which the preservation of behavior is guaranteed. They report that about 50% of cases

in which Extract Method could be performed were dismissed because it was not possible

to guarantee the preservation of behavior.

10

2.3.1.1 Limitations:

There are two key limitations:

• This approach does not deal with cases in which the execution of refactoring would

have improved the code, but the preservation of behavior is not guaranteed.

• This approach does not deal with cases in which refactoring seems correct to

developers but does not improve the software metrics.

2.3.2 Documentation

Good documentation can help identify places where refactoring can be performed.

But it is not guaranteed that the code is written in a style that allows for easy

refactoring. In addition, there is a risk that standard documentation can become out

of date, due to changes made to the code at time τ2

2.3.3 Tools Support for Refactoring

A code fragment selected for refactoring must be a list of valid statements. For instance,

it must include the jump target for continue or break (if they exist) and a return

from any possible path (if a return exists). Selection Assist [18] and Box View [18]

are two tools that help select code fragments that are valid. A third tool, Refactoring

Annotations [18], visualizes locations in the code with continue, break and return that

should be manually corrected.

These tools can indeed help with refactoring actions that require manual intervention.

However, these tools help with the technical aspect of the action, but they do not

guarantee preservation of behavior or attempt to prevent refactorability decay.

2.4 Advantages of the Our Approach

The existing approaches do not give a complete answer to the question of when and how

it is better to perform the refactoring. Compared to the previous approaches, the new

approach we will present deals better with the limitations of the other approaches.

11

• It reduces the development effort of the developer δ1 compared to preventive

refactoring.

• Ensures that the code is written in a style that will facilitate easy execution of

corrective refactoring, even by developers δ3 who are not familiar with the code.

• It is appropriate for additional development methods.

• It protects against refactorability decay during the life of the project.

• Can deal with cases in which the refactoring action changes the behavior of the code

(the necessary changes will be made by the developer δ1).

• It identifies opportunities for refactoring that seems appropriate to developer δ1 and

is not limited to improving particular software metrics.

12

Chapter 3

Problem

The difficulty of applying refactoring actions varies depending on the state of the code.

As a result, it may be necessary to perform a manual operation prior to refactoring, which

may require a detailed understanding of the code. We will present several examples, most

of them from real open-source projects, that will illustrate the problems in the current

situation.

3.1 Refactorability Decay Due to Lack of Familiarity

With the Code

As a motivation example, let us consider refactorability decay found in the JabRef

project.1 This example shows a code fragment that can be useful in other places in the

project, but if we want actually to reuse this code, we will have to perform preliminary

refactoring actions. This code is written in a style that does not make it easy to refactor

using automated tools, and requires a preliminary manual change to the code.

In List. 3.1 the highlighted code defines the size of the window. This code can be

useful but it is part of a long method. As a result, if at time τ3, we want to reuse this

code, we will have to perform EM and MM.

If we choose the highlighted segment and use the built-in refactoring tool of IntelliJ,

we will get the result described in List. 3.2 (we manually changed the name).
1JabRef is an open-source, cross-platform citation and reference management tool (https://github.

com/JabRef/jabref/).

13

https://github.com/JabRef/jabref/
https://github.com/JabRef/jabref/

Listing 3.1: The method openWindow » JabRefGUI

1 public class JabRefGUI {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private boolean correctedWindowPos;

4
... ∼∼∼Part of the code omitted∼∼∼

5 private void openWindow(Stage mainStage){
6 mainFrame.init();
7 GuiPreferences guiPreferences = preferencesService.getGuiPreferences();
8 // Restore window location and/or maximized state
9 if (guiPreferences.isWindowMaximized()) {

10 mainStage.setMaximized(true);
11 } else if ((Screen.getScreens().size()==1)&&isWindowPositionOutOfBounds()){
12 // corrects the Window, if it is outside the mainscreen
13 mainStage.setX(0);
14 mainStage.setY(0);
15 mainStage.setWidth(1024);
16 mainStage.setHeight(768);
17 correctedWindowPos = true;
18 } else {
19 mainStage.setX(guiPreferences.getPositionX());
20 mainStage.setY(guiPreferences.getPositionY());
21 mainStage.setWidth(guiPreferences.getSizeX());
22 mainStage.setHeight(guiPreferences.getSizeY());
23 }
24 ... ∼∼∼The rest of the code omitted∼∼∼
25 }
26 }

14

Listing 3.2: The extracted method

1 public class JabRefGUI {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private boolean correctedWindowPos;

4
... ∼∼∼Part of the code omitted∼∼∼

5 private boolean setWindowSize(Stage mainStage){
6 GuiPreferences guiPreferences = preferencesService.getGuiPreferences();
7 // Restore window location and/or maximized state
8 if (guiPreferences.isWindowMaximized()) {
9 mainStage.setMaximized(true);

10 } else if ((Screen.getScreens().size() == 1)&&isWindowPositionOutOfBounds()){
11 // corrects the Window, if it is outside the mainscreen
12 mainStage.setX(0);
13 mainStage.setY(0);
14 mainStage.setWidth(1024);
15 mainStage.setHeight(768);
16 correctedWindowPos = true;
17 } else {
18 mainStage.setX(guiPreferences.getPositionX());
19 mainStage.setY(guiPreferences.getPositionY());
20 mainStage.setWidth(guiPreferences.getSizeX());
21 mainStage.setHeight(guiPreferences.getSizeY());
22 }
23 }
24

25 private void openWindow(Stage mainStage){
26 mainFrame.init();
27 setWindowSize(mainStage);
28 ... ∼∼∼The rest of the code omitted∼∼∼
29 }
30 }

15

Next, to enable reuse, if we try to move the extracted method to a more general

class using the automated refactoring tool of IntelliJ, we will receive an error message:

“Field correctedWindowPos is private and will not be accessible from method

setWindowSize(Stage).”

The problem stems from the fact that the code assigns a value to the private

instance variable correctedWindowPos, that the target class has no access to. In order

to correct this problem, we must manually change the signature of the method that

we extracted, and replace the assignment to correctedWindowPos with a return of the

appropriate value. Here we encounter another problem, since not all flows in the original

code assign a value to correctedWindowPos, and as a result, the new method will not

return boolean for all the flows.

This problem cannot be easily solved even with automatic refactoring tools. In order

to enable performing the MM on the extracted method, we must make another manual

change that will ensure a return value in all flows, (for example, List. 3.3), and the code

of the original method will be as in the lower part of List. 3.3.

Does the change we made preserve the behavior of the original code? Not necessarily,

since now we assign a false value to correctedWindowPos in cases where in the original

code we would not have assigned anything (and have left the previous value). In order

to know whether this change affects the behavior or not, we must follow the flows of the

original code, and make sure that the value of correctedWindowPos was always false

before calling the openWindow method. This inspection may require an investment of

time.

We will note that if we had asked this question of developer δ1 of the original code,

in most cases he would know the answer immediately, and as a result, he could write

the original code in a different style, for example, in each flow assign a value to a

temporary variable, and at the end assign the value of the temporary variable to

correctedWindowPos, something that would have made it easy for us to perform EM

and MM (List. C.1 on page 82).

16

Listing 3.3: The corrections that allow to perform MM

1 public class JabRefGUI {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private boolean correctedWindowPos;

4
... ∼∼∼Part of the code omitted∼∼∼

5 private boolean setWindowSize(Stage mainStage){
6 GuiPreferences guiPreferences = preferencesService.getGuiPreferences();
7 // Restore window location and/or maximized state
8 if (guiPreferences.isWindowMaximized()) {
9 mainStage.setMaximized(true);

10 return false;
11 } else if ((Screen.getScreens().size()==1)&&isWindowPositionOutOfBounds()){
12 // corrects the Window, if it is outside the mainscreen
13 mainStage.setX(0);
14 mainStage.setY(0);
15 mainStage.setWidth(1024);
16 mainStage.setHeight(768);
17 return true;
18 } else {
19 mainStage.setX(guiPreferences.getPositionX());
20 mainStage.setY(guiPreferences.getPositionY());
21 mainStage.setWidth(guiPreferences.getSizeX());
22 mainStage.setHeight(guiPreferences.getSizeY());
23 return false;
24 }
25 }
26

27 private void openWindow(Stage mainStage){
28 mainFrame.init();
29 correctedWindowPos = setWindowSize(mainStage);
30 ... ∼∼∼The rest of the code omitted∼∼∼
31 }
32 }

17

Listing 3.4: A method with a useful code fragment

1 public class Source {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private String results;

4
... ∼∼∼Part of the code omitted∼∼∼

5 private void foo(String[] commandsArray, String[] paramsArray) {
6 if (commandsArray.length == paramsArray.length) {
7 int numOfErrors = 0; int numOfWarnings = 0;
8 for (int i=0;i<commandsArray.length;i++) {
9 if ((commandsArray[i].matches(".∗[{`%].∗")) ||

↪→ (paramsArray[i].matches(".∗[{`%].∗"))) continue;
10 String p = paramsArray[i];
11 String[] words = p.split("\\s+");
12 if (words.length > 2) continue;
13 String[] commands = {commandsArray[i], paramsArray[i]};
14 Runtime rt = Runtime.getRuntime();
15 Process proc = rt.exec(commands);
16 BufferedReader stdInput = new BufferedReader(new

↪→ InputStreamReader(proc.getInputStream()));
17 String outputLine = stdInput.readLine();
18 while (outputLine != null) {
19 if (outputLine.contains("error")) numOfErrors++;
20 if (outputLine.contains("warning")) numOfWarnings++;
21 results += outputLine;
22 outputLine = stdInput.readLine();
23 }
24 }
25 System.out.println("There␣were␣" + numOfErrors + "␣errors␣and␣" +

↪→ numOfWarnings + "␣warnings");
26 }
27 }
28 ... ∼∼∼The rest of the code omitted∼∼∼
29 }

18

3.2 Refactorability Decay Due to Code Erosion

List. 3.4 illustrates a scenario that is typical in many projects. A method contains some

useful fragments of code (lines 14-18, 21-23 highlighted in gray). This code accepts a

command and its arguments, runs the command, and saves the output. Initially, at

time τ1, the method is written without the lines highlighted in yellow (lines 7, 19, 20, and

25). During the life of the project (at time τ2) a subsequent developer adds the highlighted

yellow lines (in our case, for counting the number of warnings and errors reported in the

output of the command).

Suppose we need a similar functionality elsewhere in the project. In order to reuse

the code, we must first find it. However, it is not obvious how to search for relevant code

fragments. Even if the codebase is well-documented and somehow we manage to locate the

desired functionality in the foo method, we still have to identify the relevant lines of code

and extract them into a separate method in order to avoid code duplication [5]. In our case,

the changes introduced in time τ2 made the extraction difficult, because a method cannot

return multiple values. The offending variables are numOfErrors and numOfWarnings that

we do not necessarily need. We thus have to modify the code of the original method foo,

and only then will we be able to extract the desired fragment into the separate method.

3.3 The Consequence of Refactorability Decay

Let us consider to additional refactorability decay found in the JabRef project. Various

places in the project’s code verify, for a given string, that the opening and closing braces

are balanced (e.g., Listings 3.5 to 3.10). Surprisingly, however, the functionality is

duplicated with small variations rather than refactored and reused. For example, the

code in Listings 3.5 and 3.6 ignores escaped braces, while the code in Listings 3.7, 3.8,

3.9 and 3.10 counts also brace preceded with a ‘\’. As another example, the code in

Listings 3.6 and 3.9 only checks that the total number of opening and closing braces in

the entire string evens up, while the code in List. 3.5, List. 3.7, List. 3.8 and List. 3.10

checks that at no point in the string are there more closing braces than opening ones.

Such duplicated functionality makes the code smelly, lengthy, and bulky, decreases its

19

Listing 3.5: The method BibtexCaseChanger » convertSpecialChar

1 int convertSpecialChar(StringBuilder sb, char[] c, int start, FORMAT_M format) {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 while ((i<c.length) && (braceLevel>0) && (c[i]!='\\')) {
4 if (c[i] == '}') {
5 braceLevel--;
6 } else if (c[i] == '{') {
7 braceLevel++;
8 }
9 i = convertNonControl(c, i, sb, format);

10 }
11 ... ∼∼∼The rest of the code omitted∼∼∼
12 }

Figure 3.1: Attempt to perform EM via the refactoring menu.

quality, and increases technical debt.

In this example, it would be fair to assume that, whenever the developers needed such

functionality, they preferred to reimplement it rather than refactor and reuse the code

that already existed in the project. Indeed, although these code fragments seem simple,

performing even basic refactoring actions on them is much harder than it first appears.

In List. 3.5 characters are converted within the loop by calling the convertNonControl

method. If we want to extract the code that counts the brace into the braceLevel local

variable, we would need to fully understand the action of convertNonControl and decide

whether this conversion can be performed outside the while loop that counts the braces.

If we choose the segment highlighted in List. 3.5 and try to use the built-in refactoring

tool of IntelliJ, the possibility of extracting the code into a method would not even be

presented (Fig. 3.1).

The reason for this is that we marked only part of the while statement and the

automated tool does not know how to deal with such a situation.

In List. 3.6 the code counts right braces into the right local variable and left braces

20

Listing 3.6: The method FieldWriter » checkBraces

1 private static void checkBraces(String text) {
2 int left = 0; int right = 0;
3 for (int i=0; i < text.length(); i++) {
4 char item = text.charAt(i);
5 boolean charBeforeIsEscape = false;
6 if ((i>0) && (text.charAt(i-1) == '\\')) {
7 charBeforeIsEscape = true;
8 }
9 if (!charBeforeIsEscape && (item=='{')) {

10 left++;
11 else if ((!charBeforeIsEscape) && (item == '}')) {
12 right++;
13 }
14 }
15 if (!(right == 0) && (left == 0)) {

16
... ∼∼∼Part of the code omitted∼∼∼

17 }
18 if (!(right == 0) && (right < left)) {

19
... ∼∼∼Part of the code omitted∼∼∼

20 }
21 if (left != right) {
22 LOGGER.error("Braces␣don't␣match.␣Field␣value:␣{}", text);
23 throw new InvalidFieldValueException("Braces␣don't␣match..."+text);
24 }
25 }

into the left local variable. Further down the method, after the highlighted section, the

values of these two variables are used. If we want to extract this fragment of code, we

would encounter a new problem: the method extracted would need to return two values

(for right and for left). In this case, if we choose the highlighted code segment in

List. 3.6 and try to use the automated refactoring tool of IntelliJ, we would receive

an error message: “Unable to extract method. There are multiple variables to return.”

Therefore, before extraction, we would need to manually replace the use of the right and

left variables with a single variable that stores the balance. As a result of this change,

we would also need to update the three if statements at the end of the method.

In List. 3.7 a special check is performed inside the loop for handling the top level.

Therefore, in order to extract the code that counts the braces, we would need to fully

understand the surrounding code, and to decide whether or not the treatment can be

21

Listing 3.7: The method BibtexNameFormatter » formatName

1 static String formatName(Author author, String format, Warn warn) {
2 int level = 0; int i = 0;

3
... ∼∼∼The beginning of the code omitted∼∼∼

4 while ((i < n) && (level > 0)) {
5 wholeChar.append(c[i]);
6 if (c[i] == '{') {
7 level++;
8 i++;
9 continue;

10 }
11 if (c[i] == '}') {
12 level--;
13 i++;
14 continue;
15 }
16 if ((braceLevel==1) && Character.isLetter(c[i])) {
17 if ("fvlj".indexOf(c[i]) == -1) {
18 if (warn != null) {
19 warn.warn("Format␣string␣in...");
20 }
21 } else {
22 level1Chars.append(c[i]);
23 }
24 }
25 i++;
26 }
27 ... ∼∼∼The rest of the code omitted∼∼∼
28 }

22

Listing 3.8: The method BibtexNameFormatter » numberOfChars

1 public static int numberOfChars(String token, int inStop) {
2 int result = 0; int braceLevel = 0;

3
... ∼∼∼The beginning of the code omitted∼∼∼

4 while ((i < n) && (braceLevel > 0)) {
5 if (c[i] == '}') {
6 braceLevel--;
7 else if (c[i] == '{') {
8 braceLevel++;
9 }

10 i++;
11 }
12 ... ∼∼∼The rest of the code omitted∼∼∼
13 }

Listing 3.9: The method BracesCorrector » apply

1 public static String apply(String input) {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 String c = matcher.replaceAll("");
4 long diff = c.chars().filter(ch->ch=='{').count() -

↪→ c.chars().filter(ch->ch=='}').count();
5 ... ∼∼∼The rest of the code omitted∼∼∼
6 }

performed at the top level, separately from the loop that counts the braces. Similarly to

List. 3.5, in this case it is not possible to use the automated refactoring tool, because only

part of the while statement is marked.

In List. 3.8 the code updates the value of two variables (braceLevel and i) whose

values are used later on. If we want to extract the code that counts the braces, we would

need to return two values from the method. Once again, if we try to use the automated

refactoring tool, we would receive the same error message as in List. 3.6.

In List. 3.9 the code that keeps track of the number of braces is separate from the

rest of the code of the method, and therefore we can use the automated refactoring tool.

In this case, if a need for this functionality arises elsewhere in the project, the challenge

would be to find this particular fragment of code.

In List. 3.10 the hasNegativeBraceCount method only checks that there are no more

closing than opening braces. The section highlighted saves the total number of braces into

23

Listing 3.10: The method RemoveBracesFormatter » hasNegativeBraceCount

1 private boolean hasNegativeBraceCount(String val) {
2 int braceCount = 0;
3 for (int index=0; index<val.length(); index++) {
4 char charAtIndex = val.charAt(index);
5 if (charAtIndex == '{') {
6 braceCount++;
7 } else if (charAtIndex == '}') {
8 braceCount--;
9 }

10 if (braceCount < 0) {
11 return true;
12 }
13 }
14 return false;
15 }

the braceCount variable, but this variable is not referenced outside the loop. Instead, the

method returns a boolean value, whose value depends on the control flow. If we want to

extract the fragment of code that counts the braces, we would first need to rewrite the

code, while preserving its original behavior, e.g., replacing the return command inside the

loop with a break command, and outside the loop returning the expression “(braceCount

< 0).”

We note that if we try to extract the marked code fragment using the automated

refactoring tool without manually rewriting the code first, it would technically be possible

to do so. However, the result would not meet our needs. The automated refactoring tool

of Eclipse generates a method that does not compile (List. C.2 on page 83). Whereas

the automated refactoring tool of IntelliJ can handle a marked code segment that does

not have a return value from all the flows by automatically adding return false at the

end of the extracted method (List. C.3 on page 83). The generated method compiles but

the code just duplicates the original method, rather than in a method that just returns

the balance of braces.

24

Listing 3.11: List. 3.6 with the @ExtractableCode annotation added

1 @ExtractableCode(Description = "Calculate␣the␣balance␣between␣{␣and␣}")
2 private static void checkBraces(String text){
3 /∗@ExtractableBegin∗/
4 int left = 0; int right = 0;
5 for (int i=0; i < text.length(); i++) {
6 char item = text.charAt(i);
7 boolean charBeforeIsEscape = false;
8 if((i>0) && (text.charAt(i-1)=='\\')){
9 charBeforeIsEscape = true;

10 }
11 if(!charBeforeIsEscape && (item=='{')){
12 left++;
13 } else if(!charBeforeIsEscape && (item == '}')) {
14 right++;
15 }
16 }
17 /∗@ExtractableEnd∗/
18 if (!(right == 0) && (left == 0)) {

19
... ∼∼∼Part of the code omitted∼∼∼

20 }
21 if (!(right == 0) && (right < left)) {

22
... ∼∼∼Part of the code omitted∼∼∼

23 }
24 if (left != right) {
25 LOGGER.error("Braces␣don't␣match.␣Field␣value:␣{}", text);
26 throw new InvalidFieldValueException("Braces␣don't␣match..."+text);
27 }
28 }

3.4 Could Language Support have Helped to Prevent

Refactorability Decay?

We can only speculate why developer δ1, who must have authored some of these code

fragments, did not extract them into a separate method in a class that is accessible

from everywhere in the project. Perhaps, developer δ1 did not want to invest time in

performing the extraction in practice. If this is the case, we can offer developer δ1 a

lightweight alternative.

List. 3.11 is the same as List. 3.6 with the relevant fragment of code marked for reuse

with the @ExtractableCode annotation (which we shall introduce in Chapter 5). As a

result, the annotation processor emits the error message displayed in List. 3.12, reflecting

25

Listing 3.12: Build output for List. 3.11

1 java: Code fragment cannot be extracted because there are multiple variables
↪→ to return. A code fragment marked as extractable in method checkBraces
↪→ of the class FieldWriter contains 2 variables (left and right) which
↪→ change their value in the extractable fragment but are used outside
↪→ this fragment. Multiple variables cannot be the return value of an
↪→ extracted method.

the problems that need to be fixed before extraction of this code fragment into a method

is possible.

Continuing this example, had the @ExtractableCode annotation been added to the

code at time τ1, then developer δ1 would most likely have modified the code into, e.g., the

code shown in List. 3.13, replacing the variables left and right with a single variable

balance. Note that this seemingly harmless modification slightly changes the behavior

of the original method — we merged three if statements into two. Developer δ1 is in the

best position to decide whether or not this change in behavior is acceptable. Once the

code is corrected, however, it would be easy for developer δ3 to complete the extraction

of the code fragment marked in List. 3.13 at a later time with just a few mouse clicks by

using IntelliJ’s automated refactoring tool.

Similarly, marking the fragment relevant to reuse in List. 3.5 would emit the

compilation error message displayed in List. 3.14.

In contrast, marking the relevant fragment in List. 3.9 passes compilation without

errors. And if we annotate the code fragment marked in List. 3.10, we would get the

compilation error message displayed in List. 3.15.

In all these cases too, once the code is annotated and passes compilation, developer δ3

should be able to apply the refactoring actions without difficulty.

26

Listing 3.13: List. 3.11 after possible modifications by developer δ1 at time τ1

1 @ExtractableCode(Description = "Calculate␣the␣balance␣between␣{␣and␣}")
2 private static void checkBraces(String text){
3 /∗@ExtractableBegin∗/
4 int balance = 0;
5 for (int i=0; i < text.length(); i++) {
6 char item = text.charAt(i);
7 boolean charBeforeIsEscape = false;
8 if((i>0) && (text.charAt(i-1)=='\\')){
9 charBeforeIsEscape = true;

10 }
11 if(!charBeforeIsEscape && (item=='{')){
12 balance++;
13 } else if(!charBeforeIsEscape && (item == '}')) {
14 balance--;
15 }
16 }
17 /∗@ExtractableEnd∗/
18 if (balance<0) {

19
... ∼∼∼Part of the code omitted∼∼∼

20 }
21 if (balance>0) {

22
... ∼∼∼Part of the code omitted∼∼∼

23 }
24 }

Listing 3.14: Error message after annotating List. 3.5 with @ExtractableCode

1 java: Code fragment cannot be extracted. A code fragment marked as extractable
↪→ in method convertSpecialChar of the class BibtexCaseChanger contains a
↪→ broken while loop statement.

Listing 3.15: Error message after annotating List. 3.10 with @ExtractableCode

1 java: Code fragment cannot be extracted. A code fragment marked as extractable
↪→ in method hasNegativeBraceCount of the class JabRefGUI contains a
↪→ return statement but there exists a path without a return statement.

27

28

Chapter 4

Approach

We illustrate our approach on the two most frequently used refactoring actions from

Fowler’s catalog [11]:

• Extract Function [11, p. 106]: modularizing a fragment of code as a function,1 e.g.,

making a specific repeated fragment into its own new method – often referred to as

Extract Method (EM) [5, p. 110];

• Move Function [11, p. 198]: grouping a function with related functions, e.g., moving

a method to a more appropriate class – often referred to as Move Method (MM) [5,

p. 142].

We break down each refactoring action into a sequence of steps in order to identify

refactorability scents that can make the refactoring of the code difficult. At each step we

assess the level of understanding of the code that is required to carry it out in order to

classify the step as either σ-step (structural) or µ-step (mechanical, Sect. 1.3.1).

4.1 Extract Method

4.1.1 Sequence of Steps

Moving code out of method M1 into a new method M2 can be broken down into the seven

steps listed in Alg. 1. Four of them are σ-steps and three are µ-steps. We explain each

step and discuss the reasons for classifying it as either structural or mechanical.
1Inverse of Inline Function [11] expansion.

29

Algorithm 1 Extract Method
[em-1σ] Identify in M1 the code to be extracted.

[em-2σ] Decontextualize the code to be extracted.

[em-3σ] Rationalize the code to be extracted.

[em-4σ] Methodize the code to be extracted.

[em-5µ] Name the new method M2.

[em-6µ] Move the code out of M1 and into M2.

[em-7µ] Add to M1 a call to M2.

(1) The first step ([em-1σ]) is to identify in the original method M1 the code to be

extracted. However, it is not always clear where the relevant fragment begins and where it

ends, and whether or not it includes unnecessary statements. Therefore, this step requires

an understanding of the structure of the code, and we classify it as a σ-step.

Note that automated refactoring tools can identify physical fragments that can

technically be extracted (e.g., computation of a given variable [17]), but they do not

do a good job in identifying logical fragments that perform the task we are interested in.

In order to identify these code fragments, an understanding of what the code is intended

to do is needed.

(2) The second step ([em-2σ]) is to decontextualize the code to be extracted, i.e.,

separating the relevant from the irrelevant statements. However, there are situations

in which the original behavior of the code is not necessarily preserved after the separation

[17].

The code separated may contain a duplicate statement that affects the state of a

shared object (i.e., code that is copied to the new method M2 but also remains in the

original method M1). For example, in List. 4.2 after separating the code to be extracted

from the code we want to leave in place (highlighted in List. 4.1), lirt.hasNext() is

duplicated but still changes the state of the shared object litr. In this example, calling

the extractedMethod method after extraction will exhaust the list. Consequently, the

condition of the while loop remaining in the original method will always return false,

and the code left inside the loop will never be executed.

The code separated may also contain a duplicated condition that checks the value of a

30

Listing 4.1: Before extraction

1 void someMethod(List<A> list) {
2 ListIterator<A> litr =

↪→ list.listIterator();
3 while (litr.hasNext()) {
4 //Code we want to extract
5 //Code we want to leave.
6 }
7 }

Listings 4.1 and 4.2: A duplicate statement
that changes the state of a shared object: before
(List. 4.1) and after (List. 4.2) extraction.

Listing 4.2: After extraction

1 void someMethod(List<A> list) {
2 ListIterator<A> litr =

↪→ list.listIterator();
3 extractedMethod (litr);
4 while (litr.hasNext()) {
5 //Code we have left.
6 }
7 }
8 void extractedMethod

↪→ (ListIterator<A> l) {
9 while (l.hasNext()) {

10 //Code we have extracted.
11 }
12 }

Listing 4.3: Before extraction

1 public void paint(Window w) {
2 boolean scale = false;
3 this.width = w.getWidth();
4 this.height = w.getHeight();
5 this.scaleW = 1.0;
6 this.scaleH = 1.0;
7

8 if (this.width < this.MIN) {
9 this.scaleW = this.width / this.MIN;

10 this.width = this.MIN;
11 scale = true;
12 } else if (this.width > this.MAX) {
13 this.scaleW = this.width / this.MAX;
14 this.width = this.MAX;
15 scale = true;
16 }
17 }

Listings 4.3 and 4.4: A condition that checks
the value of a variable: before (List. 4.3) and after
(List. 4.4) extraction.

Listing 4.4: After extraction

1 public void paint(Window w) {
2 calcWidth(w.getWidth());
3 boolean scale = false;
4 this.height = w.getHeight();
5 this.scaleW = 1.0;
6 this.scaleH = 1.0;
7 if (this.width < this.MIN) {
8 this.scaleW=this.width/this.MIN;
9 scale = true;

10 } else if (this.width > this.MAX) {
11 this.scaleW = this.width / this.MAX;
12 scale = true;
13 }
14 }
15 void calcWidth(double width) {
16 this.width = width;
17 if (this.width < this.MAX) {
18 this.width = this.MIN;
19 } else if (this.width > this.MAX) {
20 this.width = this.MAX;
21 }
22 }

31

Listing 4.5: Before extraction

1 int fact = 1;
2 double e = 1;
3 int k = 10;
4 for (int i=1; i<k; i++) {
5 fact = fact * i;
6 e += 1/fact;
7 }

Listings 4.5 and 4.6: Using an intermediate
value: before (List. 4.5) and after (List. 4.6)
extraction.

Listing 4.6: After extraction

1 double e = 1;
2 int k = 10;
3 int fact = calcFact(k);
4 for (int i=1; i<k; i++) {
5 e += 1/fact;
6 }
7 int calcFact(int k) {
8 int fact = 1;
9 for (int i=1; i<k;i++) {

10 fact = fact * i;
11 }
12 return fact;
13 }

variable. For example, the code in List. 4.3 calculates and assigns a value to the scaleW,

width, and scale instance variables. After extracting the code that calculates the value

of width to a separate method (the relevant code is highlighted in List. 4.3), the condition

in the extracted code is duplicated in the remaining code. Since the extracted method,

calcWidth, changes the value of the width variable, which is inspected in the duplicated

code, the condition in the remaining code will never be met.

It is also possible that the remaining code relies on intermediate values in the code

separated. For example, the code in List. 4.5 calculates the value of k!, but also uses the

intermediate values of the calculation to approximate e
.= Σ∞

k=0
1
k! . After extraction, the

remaining code uses incorrectly the final value of k! instead of the intermediate values.

Note that in all these cases, the difficulty in preserving behavior is due to the fact

that the code we want to extract is intertwined with the code that remains in the original

method. In case the code to be extracted is contiguous, there is no need for this step, and

the task becomes much simpler. However, in general, unless we know that the relevant

code is separate from the rest of the code of the method, this step may require deep

understanding of the code and thus classified as structural.

(3) The third step ([em-3σ]) is to rationalize the code, i.e, fix syntax errors in the code to

be extracted. After we have separated the code to be extracted from the rest of the code

in the method, invalid code statements may have been generated, e.g., a dangling else

statement without its if , or continue or break commands without a jump destination.

32

Listing 4.7: Before extraction

1 String[] cArr = {"cd", "C:\\"};
2 String[] pArr = {"mkdir", "tmp"};
3 Runtime rt=Runtime.getRuntime();
4 String[] first={cArr[0],pArr[0]};
5 rt.exec(first);
6 String[] sec={cArr[1],pArr[1]};
7 rt.exec(sec);

Listings 4.7 and 4.8: Using the refactor tool of
IntelliJ: before (List. 4.7) and after (List. 4.8)
extraction.

Listing 4.8: After extraction

1 String[] cArr = {"cd", "C:\\"};
2 String[] pArr = {"mkdir", "tmp"};
3 Runtime rt = getRuntime({cArr[0],

↪→ pArr[0]});
4 String[] sec={cArr[1],pArr[1]};
5 rt.exec(sec);
6

7 Runtime getRuntime(String[] f) {
8 Runtime rt=Runtime.getRuntime();
9 String[] first = f;

10 rt.exec(first);
11 }

In such cases, a manual adjustment to the code is required, which may require a deeper

understanding of the code, thus we classify this step as a σ-step.

(4) The fourth step ([em-4σ]) is to methodize the code to be extracted, i.e., modify the

code to be extracted so that it can become a method. A method may return only a single

value, and if the code to be extracted contains a return command, it must return from

all paths.

In languages that do not support in-out parameters, if the code we wish to extract

assigns a value to a local variable that is used outside the code fragment, we must return

the value assigned to that variable as the method’s return value, and assign the return

value to a local variable. In order to return this variable’s value as a return value, it is

necessary that a value is assigned to a single variable, and that the assignment is made

from all possible paths. Code that does not meet these requirements needs to be manually

modified, which requires a deep understanding of the code. We thus classify this step also

as a σ-step.

(5) The fifth step ([em-5µ]) is to name the new method M2. Selecting a good and

meaningful name may be difficult, but this step does not require a deep understanding of

the code structure, we thus classify it as mechanical.

(6) The sixth step ([em-6µ]) is to perform the actual extract operation. After the

previous steps have been completed, this step is usually mechanical and supported by the

IDE tool.

(7) The seventh step ([em-7µ]) is to call the new method M2 from the original method

33

Table 4.1: Refactorability Scents of EM

Properties that can prevent refactoring Stages that are liable to be affected
Noncontiguous list of statements [em-1σ], [em-2σ]

Invalid list of statements [em-3σ]
Continue or break without a jump destination [em-3σ]

Return from some but not all paths [em-4σ]
Writes to more than one local variable that is

used outside the fragment [em-4σ]

M1. Care is needed in calling the new method with the appropriate arguments, and

verifying that the code passes compilation. We can usually do this with an IDE tool, but

sometimes we have to make manual changes. For example, the code in List. 4.7 runs two

cmd commands in order to create the C:\tmp folder. If we use the automated refactoring

tool of IntelliJ to perform the EM action on the marked section (which is a useful code

fragment that receives and runs a cmd command), we get the code shown in List. 4.8.

In this code, the marked line does not compile, because in Java we cannot initialize an

array without declaring a new variable or creating a new object with new. In addition,

we must return a Runtime value from the new method, or, alternatively, pass it as an

additional argument.

Although such manual changes require an investment of time, their correct execution

mainly requires knowledge of programming rather than familiarity with the code structure.

Therefore, this step is classified as mechanical.

4.1.2 Derivation of a Check-List of Refactorability Scents

In the Sect. 4.1.1 we analyzed the stages that make up the EM refactoring action

and the difficulties that can arise in the correct execution of each stage. Accordingly,

it is possible to derive a list of properties that can cause difficulties in the performance

of EM. Table 4.1 summarizes the problematic properties and the steps that can be affected.

Definition 4.1.1 (EM-ready) A code fragment that does not contain characteris-

tics from Table 4.1 is considered ready for EM.

34

Definition 4.1.2 (preparatory stage for EM) The preparatory stage for EM is an

activity that ensures that the code fragment intended for extraction does not contain

characteristics from Table 4.1.

After execution of the preparatory stage, we can expect that EM can be performed

(now or in the future) without dealing with the refactoring challenges that can require a

deep understanding of the surrounding code.

4.2 Move Method

4.2.1 Sequence of Steps

Moving method M out of class C1 into class C2 can be broken down into the seven steps

listed in Alg. 2. Three of them are σ-steps and four are µ-steps.

Algorithm 2 Move Method
[mm-1µ] Find the most suitable target class C2 for method M .

[mm-2σ] Separate method M from the context of the source class C1.

[mm-3µ] Adjust calls to M .

[mm-4σ] Verify that M ’s original behavior did not change.

[mm-5µ] Move method M to the target class C2.

[mm-6µ] Replace calls to C1.M with calls to C2.M .

[mm-7σ] Verify that after moving method M to C2 the original behavior of the code
is preserved.

(1) The first step ([mm-1µ]) is to find the most suitable target class C2 for method M .

There are automated tools that can help find the class to which a method transfer can

reduce coupling and improve cohesion [16, 19], but if we want to find the most conceptually

appropriate class, we will have to search for it manually. This step requires general

familiarity with the entire project, but not deep understanding of the source class or the

code of the method that we want to move, thus we classify this step as mechanical.

(2) The second step ([mm-2σ]) is to separate the method M from the context of the

source class C1. This step raises several challenges.

35

First, when the method to be moved reads the value of an instance variable, we need

to change the signature of the method and pass the variable as an argument. When the

method writes to an instance variable, the situation is more complex. As long as just a

single instance variable is used and the method returns void, we can return the new value

as the return value of the method. However, if several instance variables are used, we

have to pass them all to the method as in-out parameters, which is not always supported

in the language.

Second, when the method to be moved calls another public method of the source class,

we can still call it after the move (it only requires adjusting the code at the call site).

However, when the method to be moved calls a private method, we have to either make

that method public (not recommended in most cases) or move both methods together

to the target class. To do this, we must make sure that the second method can also be

easily moved to the new class, while preserving its behavior.

These challenges often require a change to the code structure, so we classify this step

as structural.

(3) The third step ([mm-3µ]) is to adjust calls to M to changes made to its signature

in step [mm-2σ]. Changes to the arguments or to the return value of M may be required.

This step is mainly mechanical.

(4) The fourth step ([mm-4σ]) is to ensure that the changes made in steps [mm-2σ] and

[mm-3µ] did not change the original behavior. Changing the return value of M can change

the behavior of the code that uses this method. Therefore, we classify this step as σ-step.

(5) The fifth step ([mm-5µ]) is to actually move the method M to the target class C2.

This step is mechanical.

(6) The sixth step ([mm-6µ]) is to replace all calls to C1.M with calls to C2.M . This

step is mechanical. In some cases, (especially when M is a static method), steps [mm-5µ]

and [mm-6µ] can be completed with IDE tools.

(7) The seventh step ([mm-7σ]) is to verify that after moving method M to C2 the

original behavior of the code is preserved.

There are several situations in which moving a method to another class can change the

code behavior [20, 21]. In Java, if M is an implementation of a method declared abstract

36

Table 4.2: Refactorability Scents of MM

Properties that can prevent refactoring Stages that are liable to be affected
Writes to an instance variable [mm-2σ], [mm-4σ]
Locks on the current object [mm-2σ], [mm-7σ]

Calls a private method [mm-2σ], [mm-4σ]
Overrides a method [em-7µ]

Makes the class abstract [em-7µ]

in superclass, then after moving it to another class it will not be possible to instantiate the

source class. In C++, if M was the only pure virtual function in the source class, then

the class will no longer be considered abstract, and might be accidentally instantiated.

If M overrides a method defined in the superclass, moving M to another class might

change the behavior of the subclass. If M is locked on the source class object (e.g.,

synchronized in Java), and another method in the source class locks on the same

object, then after the move, M and the other method will now lock on different objects,

and may unexpectedly run concurrently.

All of these cases require an understanding of the code, we thus classify this step as

structural.

4.2.2 Derivation of a Check-List of Refactorability Scents

According to the analysis made in the Sect. 4.2.1, it is possible to derive a list of properties

that can cause difficulties in performing MM. Table 4.2 summarizes the problematic

properties and the steps that can be affected.

Definition 4.2.1 (MM-ready) A method that does not contain characteristics from

Table 4.2 is considered ready for MM.

Definition 4.2.2 (preparatory stage for MM) The preparatory stage for MM is an

activity that ensures that the method intended for moving does not contain characteristics

from Table 4.2.

After execution of the preparatory stage, we can expect that MM can be performed

(now or in the future) without dealing with the refactoring challenges that can require a

deep understanding of the surrounding code.

37

4.3 Extract Method + Move Method

If we want to first extract a code fragment and then move it to another class, we need to

follow the EM steps in Alg. 1 and then the MM steps in Alg. 2. However, with respect

to preserving the behavior, it is sufficient to preserve the behavior observed before the

EM action [22], thereby eliminating some of the problems mentioned in Sect. 4.2. For

example, it would not be necessary to check before performing the MM action that the

method is not abstract and does not override a method in the superclass.

38

Chapter 5

Language Support

5.1 Properties of a Code Fragment

Typically, compile-time verify that certain properties are present throughout the code.

But one can think of unique tests that should run on only a certain method or only on a

certain piece of code, while the rest of the code should remain with only the usual tests.

For example, consider a project written in Java-11, and contains a certain method

that we want to include in the framework of this project, but in the future, we plan to

reuse it in another project that is written in Java-5. In this case, we want to check that

this method does not contain commands that are not included in Java-5. As another

example, consider a project that has a certain method whose execution time is critical,

while the execution time of the rest of the code is less important, we might want to check

at compilation time that this method does not create new objects.

In this work, we would like to check during compilation that certain fragments of code

and methods intended for refactoring do not have the characteristics that we defined in

Sect. 4.1 and Sect. 4.2.

5.2 New Annotations

We implemented a library for the Java programming language, named Collaborative

Refactoring Annotations (Corean), for managing the sharing of responsibility for three

refactoring actions: EM, MM, and EM+MM.

39

The library defines three annotations:

@MovableMethod, @ExtractableCode, and @MovableCode;

and two pairs of pseudo annotations:

/*@ExtractableBegin*/ and /*@ExtractableEnd*/ , and

/*@MovableBegin*/ and /*@MovableEnd*/ . It also provides an annotation processor

that runs during compilation and reports refactorability scents.

Each annotation validates for a particular refactoring action that the annotated code

does not have certain properties that are known to make σ-steps difficult to execute.

5.2.1 The @MovableMethod Annotation

Annotating a method with @MovableMethod indicates that we may want to apply the MM

refactoring action. The annotation asserts the following conditions during compilation:

ϕI The method does not assign a value to an instance variable.

ϕII The method is not locked on the current object (i.e., this).

ϕIII The method does not call a private method that is not marked with @MovableMethod.

ϕIV The method does not override a method of a superclass.

A method that satisfies these four properties facilitates the completion of steps [mm-2σ],

[mm-4σ], and [mm-7σ] even without deep understanding of the code.

5.2.2 The @ExtractableCode Annotation

Annotating a method with @ExtractableCode indicates that we may want to apply the

EM refactoring action. The annotation consists of two parts:

• Annotating the method containing the code fragment with @ExtractableCode.

• Marking the code fragment that we may want to extract with /*@ExtractableBegin*/

at the beginning of the fragment and with /*@ExtractableEnd*/ at the end of the

fragment.

This annotation ensures that:

40

ϕV The code fragment is contiguous (because, technically, only a contiguous fragment

of code can be marked.)

In addition, the annotation asserts the following conditions during compilation:

ϕV I The code fragment contains only a valid and complete list of statements.

ϕV II If the code fragment contains continue or break commands, then it also contains

the jump destination.

ϕV III If the code fragment contains a return command, then a return exists in all paths.

ϕIX The code fragment contains an assignment to at most one local variable that is used

after the marked fragment.

A code fragment that satisfies these five properties facilitates the completion of steps

[em-1σ], [em-2σ], [em-3σ] and [em-4σ] even without a deep understanding of the code.

5.2.3 The @MovableCode Annotation

Annotating a method with @MovableCode indicates that we may want to apply the

EM+MM refactoring action. The annotation consists of two parts:

• Annotating the method containing the code fragment with @MovableCode.

• Marking the code fragment on which we want to enable the EM and then MM

to be performed with /*@MovableBegin*/ at the beginning of the fragment, and

/*@MovableEnd*/ at the end of the fragment.

This annotation asserts that the marked code fragment satisfies the five conditions of

@ExtractableCode. The annotation also assert the following additional conditions:

ϕX The marked fragment does not contain an assignment to an instance variable.

ϕXI The marked fragment is not locked on the current object (i.e., this).

ϕXII The code does not call a private method that is not annotated with @MovableMethod.

41

5.2.4 Configurable Annotations

We also include two configurable annotations, @MethodRefactorability and

@CodeRefactorability, for which the user can turn on or off each one of the assertions

ϕI , . . . , ϕIV and ϕV I , . . . , ϕXII . These annotations can be configured to reflect properties

whose combination deemed important to supporting additional refactoring actions, and of

course for experimentation. For example, for Pull Up Method [11] verifying just two out

of the four conditions defined for @MovableMethod (namely, ϕI and ϕIII) should suffice.

However, mapping the entire catalog of refactorings is a topic left for future work.

5.3 Implementation Notes

To provide language support that can prevent refactorability decay requires checking that

code changes do not invalidate the conditions indicated by the annotations. When the

conditions no longer hold true, the developer can be alerted and asked to adjust either

the code (e.g., revert changes) or the invalid annotations (e.g., remove them).

One implementation strategy would be to integrate the annotation processor with

an IDE, such as IntelliJ. When the annotation processor is enabled in the IDE, the

conditions can be checked every time the code is compiled. This strategy has the

advantage of potentially reusing the IDE’s existing refactoring engine for some of the

checks. The disadvantage is that it is difficult to keep the desired semantics aligned with

what IntelliJ actually implements. For example, IntelliJ diverges from our approach

in permitting EM when there exists a path without a return, and in ignoring object locks.1

Another implementation strategy would be to integrate the annotation processor with

a version control system, such as GitHub. For example, the annotation processor can

be invoked via GitHub Actions. This has the advantage of checking the conditions every

time the code is checked-in, requiring the developer to adjust the code or the annotations

before merging. In this case, the processor may be able to compare the code fragment

against previous versions of the code and if the code was changed issue a “semantics-

may-have-changed” warning even when the assertions hold (discussed in more detail in
1The actual behavior is IDE-specific. For example, in contrast to IntelliJ, the refactoring tool of

Eclipse does alert the developer when there exists a path without a return.

42

Sect. 8.2).

Yet another implementation strategy, and the one we actually use in the prototyped

implementation of the Corean library, is to use Java’s annotation processing mechanism

to implement our own precondition checking.2 This enables us to scan and process the

code during compilation independently of which IDE or version control is used. The

advantage is rapid prototyping and ease of experimentation with different IDEs. The

disadvantage is the duplicated checks with respect to existing refactoring engines.

2https://github.com/refactorability

43

https://github.com/refactorability

44

Chapter 6

Methodology

In Sect. 3.4, we saw how the use of the new annotations can warn about, and prevent,

refactorability decay. In this chapter, we will examine more thoroughly the various

situations that arise in using the annotations, and the possibilities that exist in each

situation.

6.1 Movable Code

This example shows the preparatory stage, preventing the formation of decay, and

performing the refactoring.

Let’s look again at List. 3.4 (without the yellow lines), describing the following usage

scenario:

Developer δ1 notices that the method contains a fragment of code that runs a cmd

command with parameters, and saves the output. He understands that there is a chance

that other developers will also need this capability elsewhere in the further development

of the project. In this situation, developer δ1 has 3 options.

1. To perform the full refactoring. This option requires:

• Choosing a name for the new method.

• Deciding on the parameters to be passed.

• Performing the extraction.

• Finding a suitable class for the new method

45

2. To document the useful code. This option has the following disadvantages:

• There is no guarantee that in practice, the useful fragment can be extracted,

without an understanding of the surrounding code.

• There is no guarantee that during the life of the project, there will be no

changes to the useful code fragment that will make extracting it in the future

difficult.

3. To mark the useful code fragment with the @MovableCode annotation.

If at time τ1, developer δ1 is not interested in investing more time and effort in

performing a full refactoring, we suggest that he use the @MovableCode annotation. In

this case, after the annotation marking (as shown in List. 6.1), a compilation error, as

shown in List. 6.2, is received.

Developer δ1 is very familiar with the code he is currently writing. Therefore, he

understands that it is possible to make a small change in the style of the code fragment,

and thus solve the problem described in the compilation error. The possibility of such a

solution is illustrated in List. C.4 on page 84. After this change, the code is compiled.

At this point, the new annotation helped developer δ1 to prepare the code for future

refactoring (see Definition 4.2.2).

At the next stage, suppose that later in the life of the project, developer δ2 wants to

print the total number of errors and warnings that were generated in the command run.

In order to achieve this, he added the lines marked in yellow in figure List. 6.3. This

change causes a compilation error, that is displayed in List. 6.4.

In this situation, developer δ2 can choose one of the following three options:

1. If possible, he can fix the new code so that the problem causing the compilation

error is solved.

2. He can delete the new code.

3. He can delete the annotation, and thus declare that the code fragment is no longer

intended for refactoring.

46

Listing 6.1: The useful code annotated with @MovableCode

1 public class Source {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private String results;

4
... ∼∼∼Part of the code omitted∼∼∼

5 @MovableCode(Description = "Run␣a␣command␣and␣save␣its␣output")
6 private void foo(String[] commandsArray, String[] paramsArray) {
7 if (commandsArray.length == paramsArray.length) {
8 for (int i=0;i<commandsArray.length;i++) {
9 if ((commandsArray[i].matches(".∗[{`%].∗")) ||

↪→ (paramsArray[i].matches(".∗[{`%].∗"))) continue;
10 String p = paramsArray[i];
11 String[] words = p.split("\\s+");
12 if (words.length > 2) continue;
13 String[] commands = {commandsArray[i], paramsArray[i]};
14 /∗@MovableBegin∗/
15 Runtime rt = Runtime.getRuntime();
16 Process proc = rt.exec(commands);
17 BufferedReader stdInput = new BufferedReader(new

↪→ InputStreamReader(proc.getInputStream()));
18 String outputLine = stdInput.readLine();
19 while (outputLine != null) {
20 results += outputLine;
21 outputLine = stdInput.readLine();
22 }
23 /∗@MovableEnd∗/
24 }
25 }
26 }
27 ... ∼∼∼The rest of the code omitted∼∼∼
28 }

Listing 6.2: Error message caused by @MovableCode annotation

1 java: Code fragment cannot be extracted and then moved. A code fragment marked
↪→ as Movable in method foo of the class Source, contains assignment to
↪→ instance variable (results).

47

Listing 6.3: List. C.4 after changes by developer δ2

1 public class Source {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private String results;

4
... ∼∼∼Part of the code omitted∼∼∼

5 @MovableCode(Description = "Run␣a␣command␣and␣save␣its␣output")
6 private void foo(String[] commandsArray, String[] paramsArray) {
7 if (commandsArray.length == paramsArray.length) {
8 int numOfErrors = 0; int numOfWarnings = 0;
9 for (int i=0;i<commandsArray.length;i++) {

10 if ((commandsArray[i].matches(".∗[{`%].∗")) ||
↪→ (paramsArray[i].matches(".∗[{`%].∗"))) continue;

11 String p = paramsArray[i];
12 String[] words = p.split("\\s+");
13 if (words.length > 2) continue;
14 String[] commands = {commandsArray[i], paramsArray[i]};
15 /∗@MovableBegin∗/
16 Runtime rt = Runtime.getRuntime();
17 Process proc = rt.exec(commands);
18 BufferedReader stdInput = new BufferedReader(new

↪→ InputStreamReader(proc.getInputStream()));
19 String outputLine = stdInput.readLine();
20 String lineResult = "";
21 while (outputLine != null) {
22 if (outputLine.contains("error")) numOfErrors++;
23 if (outputLine.contains("warning")) numOfWarnings++;
24 lineResult += outputLine;
25 outputLine = stdInput.readLine();
26 }
27 /∗@MovableEnd∗/
28 results += lineResult;
29 System.out.println("There␣were␣" + numOfErrors + "␣errors␣and␣" +

↪→ numOfWarnings + "␣warnings");
30 }
31 }
32 }
33 ... ∼∼∼The rest of the code omitted∼∼∼
34 }

Listing 6.4: Error message caused by @MovableCode annotation

1 java: Code fragment cannot be extracted. A code fragment marked as Movable in
↪→ method foo of the class Source, contains contains 2 variables
↪→ (numOfErrors and numOfWarnings) which change their value in the
↪→ extractable fragment but are used outside this fragment. Multiple
↪→ variables cannot be the return value of an extracted method.

48

Option 3 is suitable for cases in which the change in the code is necessary, even at the

cost of making the code non-reusable.

Suppose developer δ2 chose option 1 and moves the new code out of the annotated

section, as shown in List. C.5 on page 85.

At this stage, the annotation helped maintain the annotated code with the

characteristics of “refactoring-ready” (Definition 4.1.1) throughout the life of the project.

In the last stage, if in practice the need arises for this capability in another place

in the project, developer δ3 can use the annotations to find that such a capability has

already been realized in the project (as explained below in Sect. 8.1), and can also use

the annotation to identify the relevant passage within the lengthy method.

Now it remains to actually extract the useful fragment and to move the new method to

a suitable class, that will be accessible from both the original method and the additional

place in the project. The annotation assures developer δ3 that the fact that he is not deeply

familiar with all the code of the original method and class, will not make it difficult for

him to perform the necessary refactoring operations.

6.2 Movable Method

This example shows the preparatory stage, preventing the formation of decay, and

performing the refactoring.

Developer δ1 created some class C, in the framework of which there arises a need to

check whether the file fileA contains a particular string. To accomplish this, developer δ1

added the isContain private method, as shown in List. 6.5.

Developer δ1 notices that this method performs a general operation that may be useful

in other places in the project in the future.

In this situation, there are the following three options:

1. To make the isContain method public. This option is not recommended, as it

would compromise the Single Responsibility of class C.

2. To move the isContain method to an appropriate class. This option requires

searching for such a class, or possibly creating a new class.

49

Listing 6.5: A useful private method

1 public class C {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 boolean b;

4
... ∼∼∼Part of the code omitted∼∼∼

5 void foo() {

6
... ∼∼∼The beginning of the code omitted∼∼∼

7 isContain("fileA", "some␣string");
8 ... ∼∼∼The rest of the code omitted∼∼∼
9 }

10

11 private void isContain(String filePath, String text){
12 b = false;
13 Scanner scanner = new Scanner(new File(filePath));
14 while (scanner.hasNextLine()) {
15 String line = scanner.nextLine();
16 if (line.contains(text)) {
17 b = true;
18 break;
19 }
20 }
21 }
22 ... ∼∼∼The rest of the code omitted∼∼∼
23 }

50

Listing 6.6: Error message after annotating List. 6.5 with @MovableMethod

1 java: The method isContains of the class C, contains assignment to instance
↪→ variable. This can make difficult to move this method to another class.

Listing 6.7: Error message caused by the changes made by developer δ2

1 java: The method isContains of the class C, is locked on "this". This can cause
↪→ a change in behavior if the method is moved to another class.

3. To mark the method with the @MovableMethod annotation.

Suppose that developer δ1 chose to mark with annotation (option 3), as a result of

which we receive the compilation error message displayed in List. 6.6.

It is likely that developer δ1, who created the class C and the isContain method, will

have no difficulty in changing the style of the code (for example, as shown in List. C.6 on

page 86) and thus fixing the problem that caused the compilation error.

In this case, as well, the annotation @MovableMethod annotation helped developer δ1

to prepare the isContain method for future refactoring (see Definition 4.2.2).

In the next stage, suppose that developer δ2 wants to add a new bar method to class

C, that also accesses the file fileA. To avoid concurrent access to the file, developer δ2

makes the isContain and bar methods synchronized (as shown in List. C.7 on page 87).

In this situation, both methods are locked on this object of class C. Therefore, if we

transfer the isContain method to another class, its this will change, and as a result,

there will no longer be a mutual locking between the isContain and bar methods.

The change that developer developer δ2 makes in isContain annotated method causes

a compilation error, that is displayed in List. 6.7.

As in the previous example, developer δ2 has 3 options to handle the error. Assume

that developer δ2 has chosen to change the code so that the isContain method does not

lock on the current object (for example, as shown in List. C.8 on page 88).

At this stage, the annotation prevented the formation of refactorability decay which

would have made it difficult for the safe execution of MM in the future.

In the last stage, if the need arises for such a capability in another place in the project,

the annotation can help to find the private method that performs the required action (as

51

Listing 6.8: List. 3.9 with the @MovableCode annotation added

1 @MovableCode(Description = "Calculate␣the␣balance␣between␣{␣and␣}")
2 public static String apply(String input) {

3
... ∼∼∼The beginning of the code omitted∼∼∼

4 String c = matcher.replaceAll("");
5 /∗@MovableBegin∗/
6 long diff = c.chars().filter(ch->ch=='{').count() -

↪→ c.chars().filter(ch->ch=='}').count();
7 /∗@MovableEnd∗/
8 ... ∼∼∼The rest of the code omitted∼∼∼
9 }

explained below in Sect. 8.1). In particular, the annotation ensures that even without a

deep understanding of all the code of class C, the isContain method can be easily moved

to another class, and this move will not change the original behavior of the code.

6.3 Annotation of Code that is Already Ready for

Refraction

Let’s look at List. 3.9 again; let’s say that developer δ1 notices that the apply method

contains a useful fragment of code that calculates the balance between the brackets.

Instead of refactoring, he can mark the relevant lines with the @MovableCode annotation,

as shown in List. 6.8.

In this case, the code is compilable even after the annotation marking, since the

relevant section is already ready for refactoring in the original form. In this case, the

operation required from developer δ1 is similar to the documentation of the code.

In the future, if in practice the need for this capability arises in another place in the

project, the annotation will help the developer δ3 to find and identify the relevant code,

and give him confidence that EM + MM refactoring can be performed on this fragment,

even without a deep understanding all the surrounding code.

52

Listing 6.9: List. 3.5 with the @ExtractableCode annotation added

1 @ExtractableCode(Description = "Calculate␣the␣balance␣between␣{␣and␣}")
2 int convertSpecialChar(StringBuilder sb, char[] c, int start, FORMAT_M format) {

3
... ∼∼∼The beginning of the code omitted∼∼∼

4 /∗@ExtractableBegin∗/
5 while ((i<c.length) && (braceLevel>0) && (c[i]!='\\')) {
6 if (c[i] == '}') {
7 braceLevel--;
8 } else if (c[i] == '{') {
9 braceLevel++;

10 }
11 /∗@ExtractableEnd∗/
12 i = convertNonControl(c, i, sb, format);
13 }
14 ... ∼∼∼The rest of the code omitted∼∼∼
15 }

6.4 Code that is Difficult to Refactor

Let’s look at List. 3.5 again. Suppose that developer δ1 detects that the code contains

a useful fragment, and marks it with the @ExtractableCode annotation, as shown in

List. 6.9.

As we saw in Sect. 3.4, the annotation results in a compilation error, as shown in

List. 3.14. In this situation, for compilation, developer δ1 has two options:

1. To mark the entire block of the while loop, and move the line:

"i = convertNonControl(c, i, sb, format)" out of the loop since this operation is not

related to the calculation of the balance between brackets.

2. To delete the annotation.

Is it possible to easily take the line "i = convertNonControl(c, i, sb, format)" out of

the while loop? Developer δ1, who wrote the code, is in the best position to answer this

question!

Suppose developer δ1 decided that the required modification was complex, and as a

result, he decided to delete the annotation. The lack of marking in the annotation can

give an indication to developer δ3 that an attempt to perform EM on this fragment, may

be complex and not worthwhile.

53

Therefore, if the project development team makes sure (for example, at the code review

level) to mark all the relevant fragments with new annotations, then the lack of markup

can help developer δ3 conclude that it is not worth trying to refactor a fragment that was

not marked by the original developer of the code.

Without the use of the new annotations, the current situation in many projects is that

at first sight, it is not always clear when it is easy, and when it is complex to perform,

refactoring. As a result of this lack of clarity, developer δ3 is liable to may fail to perform

simple refactoring, and, on the other hand, may spend time undue time trying to perform

the complex refactoring.

54

Chapter 7

Evaluation

We conducted a user study to assess the potential usefulness of the new annotations. The

refactoring annotations have two types of “clients”: developer δ1, who must understand

what the annotations mean and how they trigger compilation errors; and developer δ3, who

needs only understand how to interpret them in refactoring an annotated code fragment.

The study included synthetic refactoring tasks grouped into pairs of comparable

difficulty [23]: ⟨A1; B1⟩, ⟨A2; B2⟩, . . . Each pair of tasks contained two methods with

a useful fragment of code that should be extracted using the EM refactoring action and

should then be moved to another class using the MM refactoring action. Each method

was 10–60 lines of code in size, and the useful fragment 2–25 lines of code. In all the tasks

some level of manual change to the code was required in order to complete the refactoring

action.

We showed each pair of tasks ⟨Ai; Bi⟩ to two experienced developers, who confirmed

that the necessary changes in Ai and Bi seemed comparable in terms of the level of

difficulty and complexity1.

7.1 Simulating Developer δ1

Four developers were asked to familiarize themselves with the code of the tasks up to a

level, they felt comfortable making changes as if they had written the code themselves.

The developers received a short presentation explaining how to use the new refactoring
1For example, see Table D.1 on page 94

55

annotations. They also participated in a hands-on tutorial allowing them to experiment

with the new annotations on several code examples.

Experiment: Each developer was then asked to perform one of two things on each of

the tasks:

• Either annotate with @MovableCode a useful code fragment but not refactor it. We

denote this action by α for annotate;

• Or fully refactor a useful code fragment without annotating it. We denote this

action by ρ for refactor.

In each pair of tasks, two tasks with code without annotations were given as tasks Ai and

Bi.2 Some of the developers were asked to perform α(Ai), i.e., to locate and annotate a

useful code fragment but not refactor it, and also to perform ρ(Bi), i.e., refactor a useful

code fragment without the use of annotations. Other developers were asked to perform

ρ(Ai) and α(Bi).

The developers were asked to perform either ⟨α(Ai); ρ(Bi)⟩, ⟨α(Bi); ρ(Ai)⟩,

⟨ρ(Bi); α(Ai)⟩, or ⟨ρ(Ai); α(Bi)⟩. The experiment was conducted in this way in order

to reduce the learning effect between the tasks, and to cancel out any possible differences

between the pair of tasks ⟨Ai; Bi⟩.

After completing the tasks, the participants were asked four open questions:

[Q1] How difficult was it to annotate the code (including getting it to compile again)?

[Q2] How difficult was it to refactor the unannotated code?

[Q3] What are the advantages and disadvantages of using annotations compared to full

refactoring?

[Q4] Would you use such annotations if they were available in your programming

language?
2List. D.1 and List. D.3 (on pages 90 and 92) are examples of Ai and Bi, respectively.

56

7.2 Simulating Developer δ3

Eight developers that were not previously exposed to the code received just the short

presentation explaining how to interpret the new refactoring annotations, without the

tutorial part.

Experiment: Each developer was then given a task either in its original form without

annotations, or in its annotated form in which the useful code fragment was annotated

(denoted by “∗”)3. The developer was asked to extract to a method a fragment of

code that does the desired task and then move the new method to a specific class. To

reduce the impact of the learning effect between tasks on the results, the developers

performed the refactoring tasks in random order; i.e., either ⟨ρ(A∗
i); ρ(Bi)⟩, ⟨ρ(Bi); ρ(A∗

i)⟩,

⟨ρ(B∗
i); ρ(Ai)⟩, or ⟨ρ(Ai); ρ(B∗

i)⟩.

After completing the tasks, the participants were asked four open questions:

[Q5] Was the meaning of the annotation clear?

[Q6] What were the difficulties in refactoring annotated code versus refactoring

unannotated code?

[Q7] What is your level of confidence in the correctness of the refactoring of annotated

code versus the refactoring of unannotated code?

[Q8] Would you have liked such annotations to be used in the projects you are

maintaining?

7.3 Results

With regards to changes they made in the code, the developers simulating developer δ1

described them as simple to perform. In contrast, the developers simulating developer δ3

described these changes as difficult to make. Some of the participants noted that in a

“real situation” they would give up on the idea of reusing (unannotated) code, because of
3List. D.2, on page 91, shows an annotated version of List. D.1, as an example of A∗

i = α(Ai).

57

the difficulty involved, and because of their uncertainty that the refactoring task would

be performed correctly.

Specifically, in the first experiment that was designed to simulate developer δ1:

[Q1] All of the participants testified that it was easy to annotate the code. Some of the

participants said that the effort was similar to documentation.

[Q2] All of the participants reported that refactoring unannotated code demanded

significantly more effort. Some cited the need to choose a meaningful name for

the method and to find an appropriate class for it as a difficulty. One participant

noted that compilation errors triggered by the annotations pointed more clearly to

the code changes that were required, compared to standard compilation errors.

[Q3] All of the participants agreed that the use of annotations was easier and took less

time than full refactoring, but noted that the size of the annotated code seemed

longer than refactored code. Some noted that the use of annotations eliminated the

need for creating unnecessary methods and classes.

[Q4] All of the participants said that in case they do not want to perform preventive

refactoring in advance, they would likely use such annotations if available.

In the second experiment that was designed to simulate developer δ3:

[Q5] All of the participants testified that the meaning of the annotation was clear. Some

of the participants also noted that it was clearer where the relevant code begins and

ends, and what refactoring action is recommended.

[Q6] All of the participants reported that the annotated code was clearer, enabling them

to focus on the relevant parts, and requiring fewer changes to the code compared

to unannotated code. Some cited the dependency of the relevant parts of the code

on other parts of the method as the source of difficulty in refactoring unannotated

code.

[Q7] The level of confidence in the correctness of the refactoring actions was given on a

scale from 1 (low confidence) to 10 (high confidence). On average, the confidence

level was 8 for annotated code, and 4.5 for unannotated code.

58

[Q8] All the participants said that they would welcome such annotations in their own

projects, because these annotations would help them focus on the relevant parts of

the code when refactoring.

It is interesting to note that all the developers simulating developer δ1 completed the

task without errors. In contrast, in the tasks done on the unannotated code, errors were

made by developers simulating developer δ3 in 25% of the tasks on average4.

A possible explanation might be the different preparation. The developers simulating

developer δ1 knew the code of the whole method, because they were given enough time

to study the code, and therefore knew with confidence what needed to be changed, and

whether the change affected the rest of the code of the method. In contrast, the developers

simulating developer δ3 were unfamiliar with the code, and this created uncertainty about

the required changes and the effect of the changes on the rest of the code.

7.4 Threats to Validity

The experiment was done on a small group of developers, imperfectly mimicking actual

refactoring practices, and hence the results should be interpreted with caution. However,

all the 14 developers selected to participate in the trial were software engineers with 1–10

years of experience. Most of them with a degree in Computer Science, and therefore they

do represent engineers in the software industry.

The code tasks were synthesized for the experiment. However, to increase the

reliability of the experiment, we selected code fragments similar to the code we have

encountered in real industry software. In addition, the two developers that reviewed the

code fragments confirmed that similar code fragments can be found in real software.

The developers simulating developer δ1 did not write the code themselves, but only got

a chance to study the code. However, we assume that if these developers had written the

code themselves, their level of understanding of the code and confidence in the changes

made would have just been even higher.

4App. D.2, on page 95, shows a breakdown of the errors.

59

60

Chapter 8

Discussion

In this chapter, we discuss improvements and additional uses of annotations presented in

Sect. 5.2. Also, we discuss possible follow-up research directions for the ideas of properties

of a code fragment and shared responsibility for refactoring actions, presented in this

study.

8.1 Another Possible Benefit of Using Annotations

To reuse code that appears in our project, we must find it. Studies [24] indicated that

programmers frequently search for code, conducting an average of five search sessions,

with 12 total queries, each workday. A large number of searches are done to find reusable

code. In practice, in many cases, if the developer wants to know if a certain capability

was implemented in the project, he uses the following search techniques:

• He searches for a class that is responsible for the area in question and examines if

an appropriate method exists in this class;

• He searches the entire project by keywords.

The first technique will not help to find code fragments and private methods that are

located in classes that are responsible for other areas.

Searching by keywords will not find code fragments that do not contain the keywords

that the developer thought of. Alternatively, it is possible that the search will find a large

number of results, and a great deal of time will be needed to examine all of them and

61

Figure 8.1: The option Show Reusable Code added to Tools by the plugin

filter out those irrelevant to the subject of reuse. The annotations that were presented in

Sect. 5.2 make it possible to filter private methods and code that may be appropriate for

reuse. In addition, every annotation contains a field named Description, that enables

developer δ1 to describe the action that the code fragment or the method performs.

We implemented an IntelliJ plugin that takes advantage of these annotations in

order to display the code fragments and methods that may serve for reuse in a convenient

and centralized way, despite the fact that most probably they would not have been found

by means of a regular search. This plugin adds the option of Show Reusable Code to

Tools (Fig. 8.1). Selecting this option displays a description of, and information about,

the code fragments and methods marked by annotations, and therefore may serve for

reuse. The results are divided into three parts:

• Methods that may be moved to another class.

• Code fragments that may be extracted into a separate method.

• Code fragments that may be extracted into a separate method and moved to another

class.

For each annotated code, its location and description are displayed (Fig. 8.1).

62

8.2 Directions for Further Research

In this section, we will review the issues that have arisen, but a thorough investigation of

them is beyond the scope of this study. We have left these issues for further research in

the future.

8.2.1 Mapping the Entire Refactoring Catalog

In Sect. 1.3.2, we argued that refactoring actions can be classified according to the

following criteria:

• The refactoring action consists mainly of σ-steps.

• The refactoring action consists mainly of µ-steps.

• The refactoring action comprises multiple σ-steps and multiple µ-steps,

All refactoring actions from the catalog can be broken down into steps, and for each step,

it can be determined whether it is µ-steps or σ-steps. Accordingly, a recommendation

can be formulated as to whether this should be performed by the developer δ1, by the

developer δ3, or under joint responsibility. For example, a preliminary analysis for a

Pull-Up Method reveals that the operation consists of the steps listed in Alg. 3.

Algorithm 3 Pull Up Method
[pu-1µ] Finding the most suitable level for method M in the inheritance chain.

[pu-2σ] Separate method M from the context of the source class C1.

[pu-3µ] Adjust calls to M .

[pu-4σ] Verify that M ’s original behavior did not change.

[pu-5µ] Pull method M up in the inheritance chain to the target class C2.

The properties of the code that can make it difficult to perform steps [pu-2σ] and [pu-4σ]

are:

• Assignment of a value to an instance variable not defined in the root class.

• Calling a method (of any type of access modifiers) defined in subclasses.

This is because it is possible that the instance variable and the method will not be

accessible from the parent class to which we would like to pull the method.

63

8.2.2 Annotation for Self-contained Code that is Suitable for

Reuse

EM and MM are useful refactoring actions that enable reuse of code that is already in

the project. On the other hand, when we want to reuse the code that appears in another

module, or code from Stack Overflow, a copy-paste operation is performed, followed by

necessary adjustments [15, 25, 26]. If the code is self-contained, this is usually a simple

operation. On the other hand, if the code intended to be copied depends on other elements

in the source code, this can be complicated, or perhaps even completely not worthwhile.

It is possible to define and test the usefulness of an annotation that will indicate that the

code fragment (or method) intended for reuse is self-contained.

8.2.3 Possible Improvements to the Annotations Presented in

Sect. 5.2

• The @ExtractableCode and @MovableCode annotations make it possible to

mark only sequential code fragments. It is possible to study under what conditions

discontinuous segments can be marked, while still maintaining the desired

properties.

• The @MovableMethod annotation is used to mark useful methods that we might

want to move to another class, but it is also used to mark auxiliary methods, that

must be moved along with the useful method. It is possible to design annotation

with greater granularity, which will allow marking auxiliary methods differently.

• In this study, when we defined the properties of code that can make refactoring

actions difficult, we relied mainly on possible difficulties described in the scientific

literature. It is possible to conduct extensive in-the-field research to examine to what

extent, in practice, different code properties make it difficult for the developer δ3 to

perform different types of corrective refactoring. Depending on the results received,

the list of desirable code properties for the desired types of refactoring actions can

be updated.

64

8.2.4 Support for Refactorability Decay Prevention in Addition-

al Languages

Our goal is for refactorability decay prevention support to be an integral part of

programming languages. But in the meantime, to show the feasibility and test

usefulness and effectiveness, we used the Annotation Processor for Java. It is possible

to examine what mechanisms can integrate this capability into other languages as well.

For example, it seems that the #pragma mechanism can make it possible to add this

capability to C++.

8.2.5 Semantic Changes in Reusable Code

The annotations that we have presented protect reusable code from changes that will

make it difficult to perform refactoring in the future. But it is still possible that during

the lifetime of the project, developer δ2 will make changes to the code that will not cause

difficulty in refactoring, but will change the semantics of the code. In these cases, it

is important to check to ensure that the code still performs the action declared by the

annotation.

It is possible to integrate the annotations with version control, and to detect that

changes have been made to the annotated code relative to the previous version (for

example, the test will be performed in GitHub Actions or Git Hooks). In order to treat

cases of semantic changes in annotated code, two approaches can be taken:

1. Allow developer δ2 to make the change, but to display a warning next to the modified

annotated code. This warning will inform developer δ3 that in order to reuse the

annotated code, he must proceed with extreme caution, and ensure that the code

performs the declared operation.

2. Allow developer δ2 to perform a commit that makes a semantic change in the

annotated code only if developer δ2 confirms that the change does not affect the

declared operation of the annotated code, and that even after the change, the code

remains reusable. For example, this confirmation can be done using a special string

that will be included in the commit message.

65

66

Chapter 9

Conclusion

We present a new approach to refactoring in which code annotations capture and maintain

preconditions necessary for carrying out a refactoring action. These annotations allow the

code’s original developer δ1 to document refactoring-relevant information so that, at some

point in the future when the code starts to smell, another developer δ3, guided by the

annotations, can performs the refactoring action itself with ease and confidence.

The annotations provide developer δ1 with a channel for communicating refactoring

information to developer δ3, as well as a means for reducing the risk of refactorability decay

between time τ1 and time τ3. Unlike documentation that does not promise ease of reuse

and often becomes out of date as soon as changes are made to the code, the annotated

code lends itself to reuse and resists changes at time τ2 that can break refactoring, thus

increasing the chances for it being reused at time τ3.

The use of annotations imposes on developer δ1 less effort than full preventive

refactoring at time τ1. It also reduces developer δ3’s efforts at time τ3 compared to

corrective refactoring on code that is not annotated. Meanwhile, the use of these

annotations increases the willingness of developers to perform refactoring on unfamiliar

code, and improves their confidence in the correctness of the refactoring action.

Our approach to refactoring offers a new separation of refactoring concerns that splits

the refactoring action into two stages and the responsibility for carrying it out into two

roles. By doing so, the approach supports a refactoring process that distributes the costs

of refactoring over time, thus encouraging more refactorings than the standard process.

We hope that disciplined use of our approach would be a step toward a new refactoring-

aware programming style.

67

68

Appendix A

Developer Guide

The guide describes the internal structure of the Corean library. It can be used by

developers who wish to continue to develop the library, for example, to add to the

annotations additional properties to be tested or to add new annotations.

A.1 Overview of the Class Structure

In this section, we will briefly review the structure of the core packages and classes of the

Corean library. The class diagram of the library appears in Fig. A.1. The Java Doc

of the library appears at https://refactorability.github.io/Corean-Java-Doc/

A.1.1 The annotations Package

The annotations package contains a definition of five annotations. Each annotation

declares certain properties that exist in the annotated method or code fragment.

A.1.2 The processors Package

The processors package contains a definition of classes that handle compilation-time

testing for the methods marked with annotations.

PropertyProcessor

The PropertyProcessor class inherits from the AbstractProcessor class and

69

https://refactorability.github.io/Corean-Java-Doc/

Figure A.1: The class diagram of Corean

70

serves as a root class for classes that verify that the code does not violate certain

properties. This class overrides the process method and performs three operations:

1. Finds the source file that contains the appropriate annotation.

2. Checks that there is no violation of properties expected from the annotated

code. This test is performed by calling the abstract method verifyFile.

3. Checks the result of verifyFile and reports compilation errors.

MovableMethodPropertyProcessor

The MovableMethodPropertyProcessor class inherits from the

PropertyProcessor class, and checks that there is no property violation for

methods that are annotated by @MovableMethod. This class implements the

verifyFile method to check that all four properties described in Sect. 5.2.1 are

present. The actual test is performed by calling the verify method of the class

MethodPropertiesVerifier and passing a parameter indicating that all four

properties must be checked.

MethodRefactorabilityPropertyProcessor

The MethodRefactorabilityPropertyProcessor class inherits from the

PropertyProcessor class and checks that there is no property violation for

methods annotated by @RefactorableMethod. This class implements the

verifyFile method such that it checks that the properties defined in the

refactorability_configuration.json file for method refactorability are present.

The actual test is performed by calling the verify method of the class

MethodPropertiesVerifier, and passing a parameter indicating which tests

should be performed.

CodeFragmentPropertyProcessor

The CodeFragmentPropertyProcessor class inherits from the PropertyProcessor

class, and serves as a root class for classes that verify that a code fragment does not

violate certain properties. This class adds the ability to define a new marking for

the beginning of a code fragment and for the end of a fragment of code, and checks

that each method marked with an appropriate annotation contains a valid structure

71

of code fragment marks. The class defines abstract methods getMarkOfBegin

and getMarkOfEnd, by way of which the marks for the beginning and end of a

fragment are defined, and defines an abstract verifyCodeFragments method that

checks that the marked code fragments do not violate the desired properties. In

addition, the verifyStructureOfMarks method, which checks that the fragment

mark structure is valid, is defined and implemented. The test is done by checking

the following conditions:

1. There is at least one beginning-of-a-fragment mark.

2. An end-of-a-fragment mark comes after each beginning-of-a-fragment mark.

3. There are no two consecutive beginning-of-fragment marks or end-of-fragment

marks.

4. Each end-of-a-fragment mark follows a beginning-of-a-fragment mark.

The verifyStructureOfMarks method of the CodeFragmentPropertiesVerifier

class is used to perform these tests. The CodeFragmentPropertyProcessor

class implements the verifyFile method as follows: First, the method

verifyStructureOfMarks, which checks the validity of the marking structure,

is called, and then the abstract method verifyCodeFragments that will be

implemented in inheriting classes, and checks that the marked code fragments do

not violate the desired conditions.

ExtractableCodeFragmentPropertyProcessor

The ExtractableCodeFragmentPropertyProcessor class inherits from the

CodeFragmentPropertyProcessor class, and checks that there is no property

violation for methods annotated by @ExtractableCode. This class implements

the verifyCodeFragments method so that the four properties ϕV I - ϕIX

described in Sect. 5.2.2 are met. The actual test is performed by calling the

isCodeFragmentsExtractable method of the CodeFragmentPropertiesVerifier

class and passing a parameter specifying that all four properties must be checked.

MovableCodeFragmentPropertyProcessor

The MovableCodeFragmentPropertyProcessor class inherits from the

72

CodeFragmentPropertyProcessor class, and checks that there is no

property violation for methods annotated by @MovableCode. This class

implements the verifyCodeFragments method such that all the properties

described in Sect. 5.2.3 are present. The actual test is performed

by calling the isCodeFragmentsExtractableAndMovable method of the

CodeFragmentPropertiesVerifier class.

CodeRefactorabilityPropertyProcessor

The CodeRefactorabilityPropertyProcessor class inherits from the

PropertyProcessor class, and checks that there is no property violation

for methods annotated by @RefactorableCode. This class implements

the verifyCodeFragments method, such that the properties defined in the

refactorability_configuration.json file for code refactorability are present. The

actual test is performed by calling the isCodeFragmentsExtractable method

of the CodeFragmentPropertiesVerifier class and passing a parameter that

specifies which tests should be performed.

A.1.3 The engine Package

The engine package is responsible for actually performing checks that the code does not

violate certain properties.

MethodPropertiesVerifier

The class MethodPropertiesVerifier is responsible for testing properties related

to an entire method. The class accepts in the constructor a parameter that

specifies which of the properties described in section Sect. 5.2.1 should be checked.

The verify method performs the selected properties test and returns the overall

test result. When actually performing the property check, the class uses the

MethodPropertiesParser class.

CodeFragmentPropertiesVerifier

The CodeFragmentPropertiesVerifier class is responsible for all checks related

to code fragments. The class defines and implements three methods:

73

verifyStructureOfMarks - Checks that the methods marked with an appropriate

annotation also contain a valid code fragment marking structure.

isCodeFragmentsExtractable – Checks that the marked code fragments do not

violate the properties defined in Sect. 5.2.2 (using a configuration variable, it is

possible to define that only some properties are checked).

isCodeFragmentsExtractableAndMovable – Checks that the marked code

fragments do not violate the properties defined in Sect. 5.2.3.

In the actual execution of the property check, the class uses the

CodeFragmentPropertiesParser class.

ParserHelper

The ParserHelper class serves as a root class for classes that check for the existence

of properties in the code by analyzing an abstract syntax tree (AST). This class

creates the AST using the StaticJavaParser class, and checks which methods

are annotated with the relevant annotation. The test is done by analyzing the

information collected from the AST by classes from the visitors package.

MethodPropertiesParser

The class MethodPropertiesParser inherits from the ParserHelper class and adds

methods that check for non-violation of properties in Sect. 5.2.1. The test is done

by analyzing the information collected from the AST by classes from the visitors

package.

CodeFragmentPropertiesParser

The CodeFragmentPropertiesParser class inherits from the ParserHelper class

and adds checks related to code fragments. Here, too, the test is done by analyzing

the information collected from the AST by classes from the visitors package.

A.1.4 The visitors Package

The visitors package contains classes that collect relevant information from within

the AST. Each class inherits from the VoidVisitorAdapter class and overrides the

visit method for nodes of a particular type (e.g. MethodDeclaration, AssignExpr,

74

ReturnStmt etc.). The method passes over all the nodes of this type and collects certain

information.

A.2 Guidelines for Adding New Annotations and

Tests

In order to add to the Corean library support for a new annotation that will test other

properties, the following steps must be performed:

• Add a new interface that defines the annotation to the annotations package.

• Add a new class to the processors package to handle this annotation.

If the new annotation declares properties of a method, the new class should inherit

from PropertyProcessor and implement the verifyFile method in which the new

tests on the methods marked with the new annotation will be performed. If the new

annotation declares properties of a code fragment, the new class should inherit from

CodeFragmentPropertyProcessor and implement the abstract methods responsible for

defining the marks for the beginning and end of a fragment. And as well, it must

implement the abstract method verifyCodeFragments in which the new tests on the

code fragments marked with the new annotation will be performed.

The tests themselves can be implemented in any way desired, but of course, the existing

infrastructure in the engine and visitors packages can be used.

75

76

Appendix B

User Guide

This Guide is intended for users who want to use the annotations provided by the Corean

library in their project.

B.1 Adding the Corean Library to IntelliJ

In order to use the Corean library from IntelliJ, the developer must add the library to

the project, and enable Annotation Processors. To do this, perform the following steps.

Adding the library to the project:

• Download the collaborative-refactoring-annotations-0.0.1.jar 1.

• Right-click on the project to which you want to add -> Open module settings.

From the window that opens, select Libraries and click on + (New Project Library),

select Java, and add the collaborative-refactoring-annotations-0.0.1.jar file that was

downloaded in the previous step.

Enabling Annotation Processors:

Choose: File -> Settings -> Build, Execution, Deployment -> Compiler -> Annotation

Processors. Check the Enabling Annotation Processing checkbox, and verify that Obtain

processors from project classpath is selected.

If using Maven dependency must be added to pom.xml (List. B.1):
1https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/main/

collaborative-refactoring-annotations-0.0.1.jar

77

https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/main/collaborative-refactoring-annotations-0.0.1.jar
https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/main/collaborative-refactoring-annotations-0.0.1.jar

Listing B.1: The dependency of Corean library

1 <dependency>
2 <groupId>ac.collaborative.refactoring.annotations</groupId>
3 <artifactId>collaborative-refactoring-annotations</artifactId>
4 <version>0.0.1</version>
5 </dependency>

Listing B.2: The refactorability_configuration.json configuration file

{"codeRefactorability":{
"listOfStatementsTest":,
"continueBreakTest":,
"returnTest":,
"localVariableTest":,
"annotationMeaning":,
"annotationActionVerb":,
"markOfBegin":,
"markOfEnd":},

"methodRefactorability":{
"overrideTest":,
"lockTest":,
"instanceVariableTest":,
"callNotMoveableMethodTest":}

}

B.2 Using Configurable Annotations

In order to use @RefactorableMethod and @RefactorableCode annotations, place the

configuration file refactorability_configuration.json2 in the same folder as the project’s src

folder. The file allows you to configure the following settings for the @RefactorableMethod

and @RefactorableCode annotations (List. B.2).

Settings for @RefactorableCode

• listOfStatementsTest - Determines whether to check property ϕV I from Sect. 5.2.2.

Valid input: true/false.

• continueBreakTest - Determines whether to check property ϕV II from Sect. 5.2.2.

• returnTest - Determines whether to check property ϕV III from Sect. 5.2.2.
2https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/main/

refactorability_configuration.json

78

https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/main/refactorability_configuration.json
https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/main/refactorability_configuration.json

• localVariableTest - Determines whether to check property ϕIX from Sect. 5.2.2.

• annotationMeaning - The meaning of the annotation. E.g. "Refactorable",

"Extractble", "Movable". Intended for the formulation of compilation error messages.

• annotationActionVerb - E.g. "refactored", "extracted", "moved". Intended for the

formulation of compilation error messages.

• markOfBegin - The mark for the beginning of a fragment. E.g. "/*@Refactorable-

Begin*/"

• markOfEnd - The mark for the end of a fragment. E.g. "/*@RefactorableEnd*/"

Settings for @RefactorableMethod

• overrideTest - Determines whether to check property ϕIV from Sect. 5.2.1.

• lockTest - Determines whether to check property ϕII from Sect. 5.2.1.

• instanceVariableTest - Determines whether to check property ϕI from Sect. 5.2.1.

• callNotMoveableMethodTest - Determines whether to check property ϕIII from

Sect. 5.2.1.

B.3 Limitations

For efficiency, the prototyped Corean library checks only the file that contains the

annotated code, without loading other files. There are two limitations to this

implementation decision: (1) checking that the method does not override another method

relies on the @Override annotation; (2) checking that there are no assignments to an

instance variable does not detect assignments to instance variables defined in the parent

class.

In addition, there is the following limitation: In the file structure of the project, the

src folder should be located in a folder that is the parent folder (or ancestral folder) of

the out/target folders.

79

B.4 The ReusableCodeViewer Plugin

B.4.1 Adding the ReusableCodeViewer Plugin to IntelliJ

In order to manually add the ReusableCodeViewer plugin to IntelliJ, place the

ReusableCodeViewer-1.0-SNAPSHOT.jar3 file in the ReusableCodeViewer\lib folder under

the plugins folder of the IntelliJ.

B.4.2 Limitations

The src folder should be located under the main project folder.

3https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/
dd93ac399ddc267797f21ce699ef0e27b5346868/ReusableCodeViewer-1.0-SNAPSHOT.jar

80

https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/dd93ac399ddc267797f21ce699ef0e27b5346868/ReusableCodeViewer-1.0-SNAPSHOT.jar
https://github.com/refactorability/Collaborative-Refactoring-Annotations/blob/dd93ac399ddc267797f21ce699ef0e27b5346868/ReusableCodeViewer-1.0-SNAPSHOT.jar

Appendix C

Supplemental Examples

For completeness, this appendix provides the intermediate steps that were omitted for

clarity in the examples shown in Chapter 3 and Chapter 6.

Listings C.1 to C.3 are supplemental to the Chapter 3. Listings C.4 to C.8 are

supplemental to the Chapter 6.

81

Listing C.1: List. 3.1 after possible corrections of developer δ1

1 public class JabRefGUI {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private boolean correctedWindowPos;

4
... ∼∼∼Part of the code omitted∼∼∼

5 private void openWindow(Stage mainStage){
6 mainFrame.init();
7 GuiPreferences guiPreferences = preferencesService.getGuiPreferences();
8 boolean corrected;
9 // Restore window location and/or maximized state

10 if (guiPreferences.isWindowMaximized()) {
11 mainStage.setMaximized(true);
12 corrected = false;
13 } else if ((Screen.getScreens().size()==1) && isWindowPositionOutOfBounds()){
14 // corrects the Window, if it is outside the mainscreen
15 mainStage.setX(0);
16 mainStage.setY(0);
17 mainStage.setWidth(1024);
18 mainStage.setHeight(768);
19 corrected = true;
20 } else {
21 mainStage.setX(guiPreferences.getPositionX());
22 mainStage.setY(guiPreferences.getPositionY());
23 mainStage.setWidth(guiPreferences.getSizeX());
24 mainStage.setHeight(guiPreferences.getSizeY());
25 corrected = false;
26 }
27 correctedWindowPos = corrected;
28 ... ∼∼∼The rest of the code omitted∼∼∼
29 }
30 }

82

Listing C.2: The result of the extraction with Eclipse

1 private void extracted(String value) {
2 int braceCount = 0;
3 for (int index = 0; index < value.length(); index++) {
4 char charAtIndex = value.charAt(index);
5 if (charAtIndex == '{') {
6 braceCount++;
7 } else if (charAtIndex == '}') {
8 braceCount--;
9 }

10 if (braceCount < 0) {
11 return true;
12 }
13 }
14 }

Listing C.3: The result of the extraction with IntelliJ

1 private boolean hasNegativeBraceCount(String value) {
2 if (extracted(value)) return true;
3 return false;
4 }
5

6 private static boolean extracted(String value) {
7 int braceCount = 0;
8 for (int index = 0; index < value.length(); index++) {
9 char charAtIndex = value.charAt(index);

10 if (charAtIndex == '{') {
11 braceCount++;
12 } else if (charAtIndex == '}') {
13 braceCount--;
14 }
15 if (braceCount < 0) {
16 return true;
17 }
18 }
19 return false;
20 }

83

Listing C.4: List. 6.1 after the preparation step for EM and MM refactoring

1 public class Source {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private String results;

4
... ∼∼∼Part of the code omitted∼∼∼

5 @MovableCode(Description = "Run␣a␣command␣and␣save␣its␣output")
6 private void foo(String[] commandsArray, String[] paramsArray) {
7 if (commandsArray.length == paramsArray.length) {
8 for (int i=0;i<commandsArray.length;i++) {
9 if ((commandsArray[i].matches(".∗[{`%].∗")) ||

↪→ (paramsArray[i].matches(".∗[{`%].∗"))) continue;
10 String p = paramsArray[i];
11 String[] words = p.split("\\s+");
12 if (words.length > 2) continue;
13 String[] commands = {commandsArray[i], paramsArray[i]};
14 /∗@MovableBegin∗/
15 Runtime rt = Runtime.getRuntime();
16 Process proc = rt.exec(commands);
17 BufferedReader stdInput = new BufferedReader(new

↪→ InputStreamReader(proc.getInputStream()));
18 String outputLine = stdInput.readLine();
19 String lineResult = "";
20 while (outputLine != null) {
21 lineResult += outputLine;
22 outputLine = stdInput.readLine();
23 }
24 /∗@MovableEnd∗/
25 results += lineResult;
26 }
27 }
28 }
29 ... ∼∼∼The rest of the code omitted∼∼∼
30 }

84

Listing C.5: List. 6.3 after possible modifications by developer δ2 that do not cause refactorability decay

1 public class Source {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 private String results;

4
... ∼∼∼Part of the code omitted∼∼∼

5 @MovableCode(Description = "Run␣a␣command␣and␣save␣its␣output")
6 private void foo(String[] commandsArray, String[] paramsArray) {
7 if (commandsArray.length == paramsArray.length) {
8 int numOfErrors = 0; int numOfWarnings = 0;
9 for (int i=0;i<commandsArray.length;i++) {

10 if ((commandsArray[i].matches(".∗[{`%].∗")) ||
↪→ (paramsArray[i].matches(".∗[{`%].∗"))) continue;

11 String p = paramsArray[i];
12 String[] words = p.split("\\s+");
13 if (words.length > 2) continue;
14 String[] commands = {commandsArray[i], paramsArray[i]};
15 /∗@MovableBegin∗/
16 Runtime rt = Runtime.getRuntime();
17 Process proc = rt.exec(commands);
18 BufferedReader stdInput = new BufferedReader(new

↪→ InputStreamReader(proc.getInputStream()));
19 String outputLine = stdInput.readLine();
20 String lineResult = "";
21 while (outputLine != null) {
22 lineResult += outputLine;
23 outputLine = stdInput.readLine();
24 }
25 /∗@MovableEnd∗/
26 results += lineResult;
27 numOfErrors = lineResult.split("error", -1).length-1;
28 numOfWarnings = lineResult.split("warning", -1).length-1;
29 System.out.println("There␣were␣" + numOfErrors + "␣errors␣and␣" +

↪→ numOfWarnings + "␣warnings");
30 }
31 }
32 }
33 ... ∼∼∼The rest of the code omitted∼∼∼
34 }

85

Listing C.6: List. 6.5 after the preparation step for MM refactoring

1 public class C {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 boolean b;

4
... ∼∼∼Part of the code omitted∼∼∼

5 void foo() {

6
... ∼∼∼The beginning of the code omitted∼∼∼

7 b = isContain("fileA", "some␣string");
8 ... ∼∼∼The rest of the code omitted∼∼∼
9 }

10

11 @MovableMethod(Description = "Checks␣whether␣the␣file␣contains␣the␣string")
12 private boolean isContain(String filePath, String text) {
13 Scanner scanner = new Scanner(new File(filePath));
14 while (scanner.hasNextLine()) {
15 String line = scanner.nextLine();
16 if (line.contains(text)) {
17 return true;
18 }
19 }
20 return false;
21 }
22 ... ∼∼∼The rest of the code omitted∼∼∼
23 }

86

Listing C.7: List. C.6 after the changes made by developer δ2

1 public class C {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 boolean b;

4
... ∼∼∼Part of the code omitted∼∼∼

5 void foo() {

6
... ∼∼∼The beginning of the code omitted∼∼∼

7 b = isContain("fileA", "some␣string");
8 ... ∼∼∼The rest of the code omitted∼∼∼
9 }

10

11 @MovableMethod(Description = "Checks␣whether␣the␣file␣contains␣the␣string")
12 private synchronized boolean isContain(String filePath, String text){
13 Scanner scanner = new Scanner(new File(filePath));
14 while (scanner.hasNextLine()) {
15 String line = scanner.nextLine();
16 if (line.contains(text)) {
17 return true;
18 }
19 }
20 return false;
21 }
22

23 synchronized void bar(){

24
... ∼∼∼The beginning of the code omitted∼∼∼

25 //Code that accesses file "fileA"
26 ... ∼∼∼The rest of the code omitted∼∼∼
27 }
28 ... ∼∼∼The rest of the code omitted∼∼∼
29 }

87

Listing C.8: List. C.7 after possible modifications by developer δ2 that do not cause refactorability decay

1 public class C {

2
... ∼∼∼The beginning of the code omitted∼∼∼

3 boolean b;

4
... ∼∼∼Part of the code omitted∼∼∼

5 void foo() {

6
... ∼∼∼The beginning of the code omitted∼∼∼

7 synchronized(this)
8 {
9 b = isContain("fileA", "some␣string");

10 }
11 ... ∼∼∼The rest of the code omitted∼∼∼
12 }
13

14 @MovableMethod(Description = "Checks␣whether␣the␣file␣contains␣the␣string")
15 private boolean isContain(String filePath, String text) {
16 Scanner scanner = new Scanner(new File(filePath));
17 while (scanner.hasNextLine()) {
18 String line = scanner.nextLine();
19 if (line.contains(text)) {
20 return true;
21 }
22 }
23 return false;
24 }
25

26 synchronized void bar() {

27
... ∼∼∼The beginning of the code omitted∼∼∼

28 //Code that accesses file "fileA"
29 ... ∼∼∼The rest of the code omitted∼∼∼
30 }
31 ... ∼∼∼The rest of the code omitted∼∼∼
32 }

88

Appendix D

Evaluation Tasks

This appendix provides details about a pair of tasks given in the experiment as part of

the evaluation.

D.1 Examples of the Tasks

In this section, we’ll present an example of a pair of tasks ⟨Ai; Bi⟩ in the regular version

and A∗
i = α(Ai), B∗

i = α(Bi), in the version annotated with @MovableCode. For the pair

of tasks in the regular version, we will compare the manual changes that must be made

to the code of each of the tasks, to enable the execution of EM and MM.

The foo method in List. D.1 contains a useful fragment of code, which runs a cmd

command and saves the output.

List. D.2 shows the same method after we annotated the useful fragment with

@MovableCode annotation and made the changes in the code needed to compile it.

The foo method in List. D.3 contains a useful fragment of code, which reads the values

of a column by a given name from the database.

List. D.4 shows the same method after we annotated the useful fragment with

@MovableCode annotation and made the changes in the code needed to compile it.

89

Listing D.1: Refactoring Task Ai (without annotations)

1 package tasks;
2

3 import java.io.*;
4

5 public class Task_A {
6

7 public String getResults() {
8 return results;
9 }

10

11 public void setResults(String results) {
12 this.results = results;
13 }
14

15 String results = "";
16

17 public void foo(String[] commandsArray, String[] paramsArray) throws
↪→ IOException {

18 if (commandsArray.length == paramsArray.length) {
19 for (int i = 0; i < commandsArray.length; i++) {
20 if ((commandsArray[i].matches(".∗[{`%].∗")) ||

↪→ (paramsArray[i].matches(".∗[{`%].∗"))) continue;
21 String p = paramsArray[i];
22 String[] words = p.split("\\s+");
23 if (words.length > 2)
24 continue;
25 String[] commands = new String[2];
26 commands[0] = commandsArray[i];
27 commands[1] = paramsArray[i];
28 Runtime rt = Runtime.getRuntime();
29 Process proc = rt.exec(commands);
30 BufferedReader stdInput = new BufferedReader(new

↪→ InputStreamReader(proc.getInputStream()));
31 if (stdInput != null) {
32 String s = stdInput.readLine();
33 while (s != null) {
34 results += s;
35 s = stdInput.readLine();
36 }
37 }
38 }
39 }
40 }
41 }
42

43

44

45

46 .

90

Listing D.2: Refactoring Task A∗
i (with annotations)

1 package tasks;
2

3 import ac.collaborative.refactoring.annotations.MovableCode;
4 import java.io.*;
5

6 public class Task_A {
7 public String getResults() {
8 return results;
9 }

10

11 public void setResults(String results) {
12 this.results = results;
13 }
14

15 String results = "";
16

17 @MovableCode(Description = "Run␣a␣command␣and␣save␣its␣output")
18 public void foo(String[] commandsArray, String[] paramsArray) throws

↪→ IOException {
19 if (commandsArray.length == paramsArray.length) {
20 for (int i = 0; i < commandsArray.length; i++) {
21 if ((commandsArray[i].matches(".∗[{`%].∗")) ||

↪→ (paramsArray[i].matches(".∗[{`%].∗"))) continue;
22 String p = paramsArray[i];
23 String[] words = p.split("\\s+");
24 if (words.length > 2)
25 continue;
26 String[] commands = new String[2];
27 commands[0] = commandsArray[i];
28 commands[1] = paramsArray[i];
29 /∗@MovableBegin∗/
30 Runtime rt = Runtime.getRuntime();
31 Process proc = rt.exec(commands);
32 BufferedReader stdInput = new BufferedReader(new

↪→ InputStreamReader(proc.getInputStream()));
33 String result = "";
34 if(stdInput != null){
35 String s = stdInput.readLine();
36 while (s != null) {
37 result += s;
38 s = stdInput.readLine();
39 }
40 }
41 /∗@MovableEnd∗/
42 results+=result;
43 }
44 }
45 }
46 }

91

Listing D.3: Refactoring Task Bi (without annotations)

1 package tasks;
2

3 import java.io.IOException;
4 import java.sql.*;
5

6 public class Task_B {
7

8 public String getResults() {
9 return results;

10 }
11

12 public void setResults(String results) {
13 this.results = results;
14 }
15

16 String results = "";
17

18 public void foo(String[] columnNames, String[] tablesNames, String
↪→ mysqlUrl, String delimiter) throws IOException, SQLException {

19 if (tablesNames.length == columnNames.length) {
20 for (int i = 0; i < columnNames.length; i++) {
21 if ((columnNames[i].contains("Demo")) ||

↪→ (tablesNames[i].contains("Demo"))) continue;
22 String[] words = columnNames[i].split("\\s+");
23 if (words.length > 8)
24 continue;
25 Connection con = DriverManager.getConnection(mysqlUrl);
26 String query = "SELECT␣∗␣FROM␣" + tablesNames[i];
27 Statement stmt = con.createStatement();
28 ResultSet rs = stmt.executeQuery(query);
29 if(rs!=null){
30 while(rs.next()) {
31 results += rs.getString(columnNames[i] + delimiter);
32 }
33 }
34 }
35 }
36 }
37 }

92

Listing D.4: Refactoring Task B∗
i (with annotations)

1 package tasks;
2

3 import ac.collaborative.refactoring.annotations.MovableCode;
4 import java.io.IOException;
5 import java.sql.*;
6

7 public class Task_B {
8

9 public String getResults() {
10 return results;
11 }
12

13 public void setResults(String results) {
14 this.results = results;
15 }
16

17 String results = "";
18

19 @MovableCode(Description = "Reads␣all␣values␣from␣a␣column␣with␣a␣given␣name")
20 public void foo(String[] columnNames, String[] tablesNames, String

↪→ mysqlUrl, String delimiter) throws IOException, SQLException {
21 if (tablesNames.length == columnNames.length) {
22 for (int i = 0; i < columnNames.length; i++) {
23 if ((columnNames[i].contains("Demo")) ||

↪→ (tablesNames[i].contains("Demo"))) continue;
24 String[] words = columnNames[i].split("\\s+");
25 if (words.length > 8)
26 continue;
27 /∗@MovableBegin∗/
28 Connection con = DriverManager.getConnection(mysqlUrl);
29 String query = "SELECT␣∗␣FROM␣" + tablesNames[i];
30 Statement stmt = con.createStatement();
31 ResultSet rs = stmt.executeQuery(query);
32 String result = "";
33 if(rs!=null){
34 while(rs.next()) {
35 result += rs.getString(columnNames[i] + delimiter);
36 }
37 }
38 /∗@MovableEnd∗/
39 results += result;
40 }
41 }
42 }
43 }

93

Table D.1: Comparison of challenges

Stage Challenges in the code in
List. D.1

Challenges in the code in
List. D.3

Identifying the
code to be
extracted.

1. Understanding that the
method runs a lot of
commands in a loop,
whereas we want code that
runs a single command.

2. Understanding that the first
six lines of the for loop
contain checks that are
relevant only to the foo
method, and not to the
general case of running a
command.

1. Understanding that the
method reads column
values from many tables in
a loop, whereas we want
code that reads column
values from a single table.

2. Understanding that the first
five lines of the for loop
contain checks that are
relevant only to the foo
method, and not to the
general case of reading of
values.

Separation of
the reusable

code from the
context of the
source class.

Replace the assignment to the
instance variable with an

auxiliary variable and update
the instance variable outside

of the reusable code.

Replace the assignment to the
instance variable with an

auxiliary variable and update
the instance variable outside

of the reusable code.

Table D.1 shows a comparison of the challenges that arise if we perform EM + MM

on the reusable code fragments in List. D.1 and List. D.3.

94

D.2 Details of the Results

In this section, we will list the errors made when developers, who were not familiar with

the code, performed EM + MM on code in a regular (unannotated) version.

1. Incorrect identification of the fragment, that caused a change in behavior in the

original code.

2. The extracted fragment did not exactly perform the desired action.

3. Unnecessary commands that are not required in the general case were extracted.

4. Incorrect update of the conditions remaining in the original code. Making this

change is required due to necessary changes made to the extracted code.

5. Inability to complete the task.

6. Missing handling of an edge case that was in the original code, but was lost during

the extraction.

7. Unnecessary parameters were passed to the new method.

8. After introducing the use of an auxiliary variable, forget to update the original

instance variable.

Errors 1, 5, 6, 7, and 8 occurred once. Errors 2, 3, and 4 occurred twice.

In relation to tasks ⟨Ai; Bi⟩ presented in App. D.1, during the eight times EM + MM

was performed on the code of the tasks Ai or Bi, three errors were made.

1. The line of code "if (words.length > 2) continue;" was also extracted. This check is

not required in the general case.

2. Inability to complete the task.

3. The developer forgot to update the results instance variable, as it was in the

original code.

95

96

Bibliography

[1] Dov Fraivert and David H. Lorenz. Language support for refactorability decay

prevention. In Proceedings of the 21st ACM SIGPLAN International Conference

on Generative Programming: Concepts and Experiences, GPCE ’22, pages 122–134,

Auckland, New Zealand, December 2022. ACM.

[2] Dov Fraivert and David H. Lorenz. Explicit code reuse recommendation. In

Companion Proceedings of the ACM SIGPLAN International Conference on Systems,

Programming, Languages, and Applications: Software for Humanity, SPLASH ’22,

pages 9–10, Auckland, New Zealand, December 2022. ACM.

[3] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,

Department of Computer Science, University of Illinois at Urbana-Champaign,

Urbana, Illinois, 1992.

[4] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions

on Software Engineering, 30(2):126–139, February 2004.

[5] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Boston, MA, USA, 1999. With contributions by Kent Beck, John Brant, William

Opdyke, and Don Roberts.

[6] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and Fabio

Palomba. An experimental investigation on the innate relationship between quality

and refactoring. Journal of Systems and Software, 107:1–14, September 2015.

[7] Mathieu Nassif and Martin P. Robillard. Revisiting turnover-induced knowledge loss

in software projects. In Proceedings of the 33rd IEEE International Conference on

97

Software Maintenance and Evolution, ICSME ’17, pages 261–272, Shanghai, China,

September 2017. IEEE.

[8] Gábor Szőke. Fighting Software Erosion with Automated Refactoring. PhD thesis,

Department of Software Engineering, University of Szeged, Szeged, Hungary, 2019.

[9] Danny Dig. The landscape of refactoring research in the last decade (keynote).

In Proceedings of the 16th ACM SIGPLAN International Conference on Generative

Programming: Concepts and Experiences, GPCE ’17, Vancouver, BC, Canada,

October 2017. ACM.

[10] Reid Holmes. Pragmatic Software Reuse. University of Calgary, Faculty of Graduate

Studies, Calgary, Alberta, Canada, 2008.

[11] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley

Signature Series (Fowler). Addison-Wesley, Boston, MA, US, 2 edition, 2018. With

contribution by Kent Beck.

[12] Robert C. Martin, James Newkirk, and Robert S. Koss. Agile Software Development:

Principles, Patterns, and Practices, volume 2. Prentice-Hall, Upper Saddle River,

NJ, 2003.

[13] Steve McConnell. Code Complete. Pearson Education, Microsoft Press, London,

England, UK, 2004.

[14] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

Boston, MA, US, 2000.

[15] Reid Holmes and Robert J. Walker. Systematizing pragmatic software reuse. ACM

Transactions on Software Engineering Methodology, 21(4):1–44, February 2013.

[16] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of move method

refactoring opportunities. IEEE Transactions on Software Engineering, 35(3):347–

367, 2009.

98

[17] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract method

refactoring opportunities for the decomposition of methods. Journal of Systems and

Software, 84(10):1757–1782, October 2011.

[18] Emerson Murphy-Hill and Andrew P. Black. Breaking the barriers to successful

refactoring: Observations and tools for extract method. In Proceedings of the 30th

International Conference on Software Engineering, ICSE ’08, pages 421–430, Leipzig,

Germany, May 2008. ACM.

[19] Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination

of refactorings for improving the class structure of object-oriented systems. In

Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’06, page 1909–1916, Seattle, Washington, USA, 2006. ACM.

[20] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di Penta,

Rocco Oliveto, and Orazio Strollo. When does a refactoring induce bugs? an

empirical study. In Proceedings of the IEEE 12th International Working Conference

on Source Code Analysis and Manipulation, SCAM ’12, page 104–113, USA, 2012.

IEEE Computer Society.

[21] Massimiliano Di Penta, Gabriele Bavota, and Fiorella Zampetti. On the relationship

between refactoring actions and bugs: A differentiated replication. In Proceedings

of the 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, page

556–567, Virtual Event, USA, 2020. ACM.

[22] Donald B. Roberts. Practical Analysis for Refactoring. PhD thesis, Department

of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois,

April 1999.

[23] Elizabeth Martin, Don R. Lyon, and Brian T. Schreiber. Designing synthetic tasks

for human factors research: An application to uninhabited air vehicles. In Proceedings

of the Human Factors and Ergonomics Society 42nd Annual Meeting, pages 123–127,

Chicago, Illinois, October 1998. The Society, Santa Monica, CA.

99

[24] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. How developers search

for code: A case study. In Proceedings of the 2015 10th Joint Meeting on Foundations

of Software Engineering, ESEC/FSE 2015, page 191–201, New York, NY, USA, 2015.

Association for Computing Machinery.

[25] Ameer Armaly and Collin McMillan. Pragmatic source code reuse via execution

record and replay. Journal of Software: Evolution and Process, 28(8):642–664, 2016.

[26] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. How do developers

utilize source code from stack overflow? Empirical Software Engineering, 24(2):637–

673, 2019.

100

101

עניינים תוכן

1 מבוא 1

7 רקע 2

13 הבעיה 3

29 הגישה 4

39 התכנות שפת של תמיכה 5

45 מתודולוגיה 6

55 הערכה 7

61 דיון 8

67 סיכום 9

69 למפתח מדריך A

77 למשתמש מדריך B

81 לדוגמאות השלמות C

89 הערכה משימות D

תקציר

עקרונות של הפרה על המעידים מאפיינים הם (code smells) קוד של ריחות

ללא נכתב שהקוד במקרה אפילו הקוד. איכות על לרעה המשפיעים התכן,

הפרויקט. חיי במהלך יווצרו שהריחות גבוה סיכון קיים ריחות,

מניעתי קוד ארגון לבצע יכולים הקוד של המפתחים זאת, למנוע בשביל

כפי הקוד את להשאיר או הסיכון, את שיקטין ,(preventive refactoring)

הריחות וכאשר אם (corrective refactoring) מתקן קוד ארגון ולבצע שהוא

יופיעו.

בפועל, אולם שלה. והחסרונות היתרונות את יש הללו מהגישות אחת לכל

זה הפיתוח. בשלב מניעתי קוד מארגון נמנעים רבים מפתחים אחד מצד

מובטח. לא הנדרשת ההשקעה על ההחזר ולכן ודאי לא שהצורך בגלל קורה

אחרים מפתחים הפרויקט, חיי בהמשך מופיעים הריחות כאשר גם שני, מצד

של המורכבות בגלל מתקן קוד מארגון נמנעים הקוד, את מכירים שפחות

לארגון מתבקשות הזדמנויות מתפספסות מכך כתוצאה הזה. בשלב הפעולה

הקוד. של ובתחזוקתיות באיכות שפוגע מה מחדש, קוד

אטומית, כפעולה לא מחדש הקוד ארגון לפעולת מתיחסים זו בעבודה

האחריות את לחלק לנו מאפשרת זו גישה פעולות. תתי של כרצף אלא

הקוד הכנת על שאחראי הקוד, של המקורי המפתח בין הפעולות תתי על

הקוד ארגון של בפועל הביצוע על שאחראי עתידי ומפתח מחדש, לארגון

ופיתחנו תכננו זו, אחריות חלוקת לנהל בשביל הופיעו). שהריחות (במקרה

קומפילציה בזמן שמורצות ובדיקות (annotations) אנוטציות של קבוצה

תוכנה משחיקת שמונעים (annotation processor) אנוטציות מעבד בעזרת

מחדש. קוד ארגון לבצע ביכולת לפגוע (software erosion)

בשימור התכנות שפת תמיכת
מחדש הקוד את לארגן היכולת

תואר לקבלת מהדרישות כחלק הוגשה זו תזה עבודת

המחשב במדעי M.SC. למדעים״ ״מוסמך

פרייברט דב

לורנץ דוד פרופ׳ בהנחיית נעשה המחקר

המחשב ומדעי למתמטיקה במחלקה

הפתוחה האוניברסיטה

האו״פ לסנט הוגש

2023 ספטמבר

	List of Figures
	List of Listings
	List of Tables
	List of Algorithms
	List of Definitions
	Introduction
	When to Refactor?
	The Problem
	Our Approach
	Refactoring the Refactoring Action
	Approach to Preventing Refactorability Decay

	Background
	Preventive Refactoring
	Advantages
	Disadvantages Due to Incompatibility
	Disadvantages Due to Lack of Worthwhileness

	Corrective Refactoring
	Advantages
	Disadvantages

	Tools that Help Perform Corrective Refactoring
	Identifying Refactoring Opportunities
	Limitations:

	Documentation
	Tools Support for Refactoring

	Advantages of the Our Approach

	Problem
	Refactorability Decay Due to Lack of Familiarity With the Code
	Refactorability Decay Due to Code Erosion
	The Consequence of Refactorability Decay
	Could Language Support have Helped to Prevent Refactorability Decay?

	Approach
	Extract Method
	Sequence of Steps
	Derivation of a Check-List of Refactorability Scents

	Move Method
	Sequence of Steps
	Derivation of a Check-List of Refactorability Scents

	Extract Method + Move Method

	Language Support
	Properties of a Code Fragment
	New Annotations
	The @MovableMethod Annotation
	The @ExtractableCode Annotation
	The @MovableCode Annotation
	Configurable Annotations

	Implementation Notes

	Methodology
	Movable Code
	Movable Method
	Annotation of Code that is Already Ready for Refraction
	Code that is Difficult to Refactor

	Evaluation
	Simulating Developer 1
	Experiment:

	Simulating Developer 3
	Experiment:

	Results
	Threats to Validity

	Discussion
	Another Possible Benefit of Using Annotations
	Directions for Further Research
	Mapping the Entire Refactoring Catalog
	Annotation for Self-contained Code that is Suitable for Reuse
	Possible Improvements to the Annotations Presented in sec:newannotations
	Support for Refactorability Decay Prevention in Additional Languages
	Semantic Changes in Reusable Code

	Conclusion
	Developer Guide
	Overview of the Class Structure
	The annotations Package
	The processors Package
	The engine Package
	The visitors Package

	Guidelines for Adding New Annotations and Tests

	User Guide
	Adding the Corean Library to IntelliJ
	Using Configurable Annotations
	Limitations
	The ReusableCodeViewer Plugin
	Adding the ReusableCodeViewer Plugin to IntelliJ
	Limitations

	Supplemental Examples
	Evaluation Tasks
	Examples of the Tasks
	Details of the Results

